|
|
Analysis of driving forces and spatial scale effects on vegetation dynamics in the Qinghai Lake Basin |
ZHOU Mei-lin1,2, LIU Jia-hong1,3, LIU Xi-sheng4, WANG Ya-qin2,5 |
1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 2. Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, China; 3. Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China; 4. Qinghai Hydrological and Water Resources Survey and Report Center, Xining 810001, China; 5. China Institute of Geo-Environment Monitoring, Beijing 100081, China |
|
|
Abstract This study utilized Landsat images to analyse spatiotemporal variations of FVC in QHLB from 1986 to 2020. The driving mechanisms of the FVC changes at temporal and spatial scales was investigated, taking into account the influences of climate, surface conditions, and human activity by employing multiple linear regression and geodetector. Additionally, the mechanism of change was discussed, and the impact of spatial granularity on driving factors and their relative contributions was explored. The results shows that: (1) the vegetation conditions in the QHLB have improved overall in the past 35 years, marked by an increase in vegetation types of medium and moderate height, along with a notable rise in FVC around the Qinghai Lake and the upper reaches of the Buha River; (2) On temporal scale, changes in FVC were primarily influenced by climate warming, humidification and ecological restoration initiatives; (3) On spatial scale, changes in FVC were controlled by climate, topography, vegetation, and soil, and the factor with greater explanatory power was temperature (0.41), elevation (0.34) and precipitation (0.30). Furthermore, the influence of climate, topography, and human activity exhibits a synergistic interaction, with temperature and elevation playing a controlling role in these interactions. Among these, the interaction between and factors such as water systems, precipitation, and human activities were particularly significant; (4) The spatial scale proved to be a critical factor influencing the contributions of driving factors. Therefore, taking into consideration the interaction of climate, surface conditions, and human factors, the optimal scale for investigating the FVC changes in QHLB was determined to be 6km.
|
Received: 03 July 2023
|
|
Corresponding Authors:
刘家宏,教授级高工,liujh@iwhr.com
E-mail: liujh@iwhr.com
|
|
|
|
[1] Gao L, Wang X, Johnson B A. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,159:364-377. [2] Xin Z, Xu J, Zheng W. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981~2006):Impacts of climate changes and human activities[J]. Science in China Series D:Earth Sciences, 2008,51(1):67-78. [3] Tong S, Zhang J, Ha S, et.al. Dynamics of fractional vegetation coverage and its relationship with climate and human activities in inner mongolia, china[J]. Remote Sensing, 2016,8(9):776. [4] Guo W, Ni X, Jing D, et.al. Spatial-temporal patterns of vegetation dynamics and their relationships to climate variations in Qinghai Lake Basin using MODIS time-series data[J]. Journal of Geographical Sciences, 2014,24(6):1009-1021. [5] 李辉霞,刘国华,傅伯杰.基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011,31(19):5495-5504. Li H X, Liu G H, Fu B J. Response of vegetation to climate change and human activity based on NDVI in the three-river headwaters region[J]. Acta Ecologica Sinica, 2011,31(19):5495-5504. [6] 张涛,曹广超,曹生奎,等.2000~2014年青海湖流域NPP时空分布特征[J]. 中国沙漠, 2015,35(4):1072-1080. Zhang T, Cao G C, Cao S K, et.al. Spatial-temporal characteristics of the vegetation net primary production in the Qinghai Lake Basin from 2000 to 2012[J]. Journal of Desert Research, 2015,35(4):1072-1080. [7] 苏布达,陈梓延,黄金龙,等.气候变化的影响归因:来自IPCC AR6WGⅡ的新认知[J]. 大气科学学报, 2022,45(4):512-519. Su B D, Chen X Y, Huang J L, et.al. Impact attribution of climate change:the new cognition from IPCC AR6WG Ⅱ[J]. Transactions of Atmospheric Sciences, 2022,45(4):512-519. [8] 王军,张骁,高岩.青藏高原植被动态与环境因子相互关系的研究现状与展望[J]. 地学前缘, 2021,28(4):70-82. Wang J, Zhang X, Gao Y. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau:A review of research progress and prospect[J]. Earth Science Frontiers, 2021,28(4):70-82. [9] 姜萍.1982~2015年中国植被覆盖变化及其对气候变化的敏感性分析[D]. 兰州:兰州大学, 2022. Jiang P. Analysis of vegetation change in China and its sensitivity to climate variability from 1982 to 2015[D]. Lanzhou:Lanzhou University, 2022. [10] 李鑫磊,李瑞平,王秀青,等.基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析[J]. 干旱区研究, 2023,40(4):623-635. Li X L, Li R P, Wang X Q, et.al. Spatiotemporal change and analysis of factors driving forest-grass vegetation coverage in Hetao Irrigation District based on geographical detector[J]. Arid Zone Research, 2023,40(4):623-635. [11] 王星,霍艾迪,吕继强,等.塔里木河干流植被覆盖度动态变化及驱动因素分析[J]. 农业工程学报, 2023,39(8):284-292. Wang X, Huo A D, Lv J Q, et.al. Dynamic changes and driving factors of vegetation coverage in the mainstream of Tarim River, China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023,39(8):284-292. [12] 潘虹,顾海敏,史建桥,等.基于RS和GIS的青海湖流域植被覆盖度变化与驱动因子研究[J]. 资源开发与市场, 2016,32(7):827-831,768. Pan H, Gun H M, Shi J Q, et.al. Study on changes of vegetation fraction and its driving factors in Qinghai Lake Basin based on RS and GIS[J]. Resource Developemt & Market, 2016,32(7):827-831,768. [13] 倪向南,郭伟.2001~2010年青海湖流域植被覆盖时空变化特征[J]. 地球环境学报, 2013,4(4):1363-1370. Ni X N, Guo W. Spatial variations of vegetation change in Qinghai Lake Basin during 2001~2010[J]. Journal of Earth Environment, 2013, 4(40):1363-1370. [14] 高黎明,张乐乐.青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019,21(9):1318-1329. Gao L M, Zhang L L. Spatiotemporal dynamics of the vegetation coverage in Qinghai Lake Basin[J]. Journal of Geo-information Science, 2019,21(9):1318-1329. [15] 王一,郝利娜,许强,等.2001~2019年黄土高原植被覆盖度时空演化特征及地理因子解析[J]. 生态学报, 2023,6:1-11. Wang Y, Hao L N, Xu Q, et.al. Spatio-temporal variations of vegetation coverage and its geographical factors analysis on the Loess Plateau from 2001 to 2019[J]. Acta Ecological Sinica, 2023,6:1-11. [16] 罗舒元,朱清科,辛云玲,等.陕北吴起县植被覆盖度时空特征及其影响机制[J]. 中国水土保持科学, 2020,18(3):146-154. Luo S Y, Zhu Q K, Xin Y L, et.al. Spatio-temporal characteristics of vegetation coverage and its influencing mechanism in Wuqi county, northern Shaanxi province[J]. Science of Soil and Water Conservation, 2020,18(3):146-154. [17] 孟琪,武志涛,杜自强,等.基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J]. 中国环境科学, 2021,41(2):826-836. Meng Q, Wu Z T, Du Z Q, et.al. Quantitative influence of regional fractional vegetation cover based on geodetector model——take the Beijing-Tianjin sand source region as an example[J]. China Environmental Science, 2021,41(2):826-836. [18] 赵丹,王祖伟,张国壮,等.因子回归和交互联合探索区域植被覆盖度的影响因素-以三江源地区为例[J]. 中国环境科学, 2022, 42(8):3903-3912. Zhao D, Wang Z W, Zhang G S, et.al. Identifying factors affecting regional fractional vegetation cover based on a combination of factor regression and interaction——a case study on the Three-River Headwaters Region[J]. China Environmental Science, 2022,42(8):3903-3912. [19] 刘瑜,汪珂丽,邢潇月,等.地理分析中的空间效应[J]. 地理学报, 2023,78(3):517-531. Liu Y, Wang K L, Xing X Y, et.al. On spatial effects in geographical analysis[J]. Acta Geographica Sinica, 2023,78(3):517-531. [20] 中国科学院兰州分院.青海湖近代环境的演化和预测[M]. 北京:科学出版社, 1994. Lanzhou Branch of Chinese Academy of Sciences. Evolution and prediction of modern environment of Qinghai lake[M]. Beijing:Science Press, 1994. [21] 孙永亮,李小雁,汤佳,等.青海湖流域气候变化及其水文效应[J]. 资源科学, 2008,30(3):354-362. Sun Y L, Li X Y, Tang J, et.al. Climate change and hydrological response in the watershed of Qinghai Lake[J]. Resource Science, 2008,30(3):354-362. [22] 彭守璋.中国1km分辨率逐月平均气温数据集(1901~2021).时空三级大数据平台, 2019. DOI:10.11888/Meteoro.tpdc.270961. CSTR:18406.11.Meteoro.tpdc.270961. Peng S Z. 1-km monthly mean temperature dataset for China (1901~2021). A Big Earth Data Platform for Three Poles, 2019. DOI:10.11888/Meteoro.tpdc.270961. CSTR:18406.11.Meteoro.tpdc. 270961. [23] 彭守璋.中国1km分辨率逐月平均降水数据集(1901~2021)[J]. 国家青藏高原科学数据中心, 2020.https://doi.org/10.5281/zenodo.3185722. Peng S Z. 1-km monthly precipitation dataset for China (1901~2021). National Tibetan Plateau/Third Pole Environment Data Center. https://doi.org/10.5281/zenodo.3185722. [24] Zou D, Zhao L, Sheng Y, et.al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017,11(6):2527-2542. [25] Sanderson E W. The human footprint and the last of the wild[J]. Bioscience, 2002,52(10):891-904. [26] 段群滔,罗立辉.1990~2015年青藏高原人类足迹数据集[J]. 中国科学数据, 2020,5(3):303-312. Duan Q T, Luo L H. A dataset of human footprint over the Qinghai- Tibet Plateau during 1990~2015[J]. China Scientific Data, 2020,5(3):303-312. [27] Duan Z, Wang X, Shakhimardan S, et al. Impacts of lake water change on vegetation development in the retreat area of the Aral Sea[J]. Journal of Hydrology, 2022,613:128416. [28] Kendall M G.Rank Correlation Methods[J]. British Journal of Psychology, 1990,25(1):86-91. [29] 王劲峰,徐成东.地理探测器:原理与展望[J]. 地理学报, 2017,72(1):116-134. Wang J F, Xun C D. Geodetector:principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134. [30] 翟俊,侯鹏,赵志平,等.青海湖流域景观格局空间粒度效应分析[J]. 国土资源遥感, 2018,30(3):159-166. Di J, Hou P, Zhao Z P, et.al. An analysis of landscape pattern spatial grain size effects in Qinghai Lake Watershed[J]. Remote Sensing for Natural Resources, 2018,30(3):159-166. [31] 刘磊,李小雁,蒋志云,等.青海湖流域不同海拔高度土壤水分时空变化特征[J]. 资源科学, 2017,39(2):263-275. Liu L, Li X Y, Jiang Z Y, et.al. Variation in soil water content along different altitude gradients in the Qinghai Lake Watershed[J]. Resources Science, 2017,39(2):263-275. [32] Huang M, Piao S, Ciais P, et.al. Air temperature optima of vegetation productivity across global biomes[J]. Nature Ecology & Evolution, 2019,3(5):772-779. [33] 王志鹏,张宪洲,何永涛,等.降水变化对藏北高寒草原化草甸降水利用效率及地上生产力的影响[J]. 应用生态学报, 2018,29(6):1822-1828. Wang Z P, Zhang X Z, He Y T, et.al. Effects of precipitation changes on the precipitation use efficiency and aboveground productivity of alpine steppe-meadow on norther Tibetan Plateau, China[J]. Chinese Journal of Applied Ecology, 2018,29(6):1822-1828. [34] Xu Z, Cheng L, Liu P, et al. Detecting and quantifying the impact of long-term terrestrial water storage changes on the runoff ratio in the head regions of the two largest rivers in China[J]. Journal of Hydrology, 2021,601:1266. |
|
|
|