|
|
Forecast and analysis of China's industrial CO2 emissions from 2020 to 2060 based on the IO-SDA method |
WANG Huo-gen, WANG Yu-ting, XIAO Li-xiang |
College of Economics and Management, Jiangxi Agricultural University, Nanchang 330045, China |
|
|
Abstract Firstly, the IO-SDA method was employed to calculate CO2 emissions from 2017 to 2020. Then, based on domestic authoritative forecasting reports, the RAS method was used to derive the input-output table and energy consumption data of various industries from 2025 to 2060. Finally, the IO-SDA method was used to quantitatively evaluate the contribution of each driving factor to changes in both the total CO2 emissions and CO2 emissions in various industries of different periods between 2020 to 2060. The results show that CO2 emissions in China’s industries were observed to initially increase and then decrease from 2020 to 2060. A peak in emissions was reached around 2030, followed by a plateau period. Starting in 2035, a rapid reduction in emissions was initiated, with the rate of decrease slowing down after 2050. The foremost driving factor of CO2 emissions from 2020 to 2060 is the scale of final demand, with carbon emission intensity being the most important mitigating factor. While input-output and final demand structures only promote CO2 emissions growth during specific periods, they generally have a positive impact on CO2 reduction, albeit limited. With the stabilization of the economic structure, the impact of the two factors gradually diminishes. The total CO2 emissions and the amplitude of changes in four key factors were observed to undergo a transition from minimal to maximal and then back to minimal across three distinct phases: the peak plateau period, the rapid reduction period, and the comprehensive neutralization period. From the perspective of industry, the major drivers of CO2 reduction include the production and supply of public goods, such as electricity, metal products manufacturing, transportation, storage and postal services, and the chemical industry. In order to effectively achieve CO2 reduction goals, government policies should continue to give full play to the positive effects of carbon emission intensity as well as place greater emphasis on the positive effects of technological innovation in key industries and optimizing the final demand structure for CO2 reduction.
|
Received: 03 July 2023
|
|
Corresponding Authors:
王火根,教授,412163218@qq.com
E-mail: 412163218@qq.com
|
|
|
|
[1] 顾阿伦,吕志强.经济结构变动对中国碳排放影响——基于IO-SDA方法的分析[J]. 中国人口·资源与环境, 2016,26(3):37-45. Gu A L, Lv Z Q. Effects of economic structure change on carbon emission of China:analysis based on IO-SDA model[J]. China Population, Resources and Environment, 2016,26(3):37-45. [2] 张炎治,冯颖,张磊.中国碳排放增长的多层递进动因——基于SDA和SPD的实证研究[J]. 资源科学, 2021,43(6):1153-1165. Zhang Y Z, Feng Y, Zhang L. Analysis on the progressive motivation of carbon emissions growth in China using structural decomposition analysis and structural path decomposition methods[J]. Resources Science, 2021,43(6):1153-1165. [3] 廖明球,许雷鸣.二氧化碳排放的IO-SDA模型及其实证研究[J]. 统计研究, 2017,34(7):62-70. Liao M Q, Xu L M. IO-SDA model of CO2 emissions and its empirical research[J]. Statistical Research, 2017,34(7):62-70. [4] 刘云枫,冯姝婷,葛志远.基于结构分解分析的1980~2013年中国二氧化碳排放分析[J]. 软科学, 2018,32(6):53-57. Liu Y F, Feng S T, Ge Z Y. Analysis of Chinese carbon dioxide emissions based on structural decomposition analysis from 1980 to 2013[J]. Soft Science, 2018,32(6):53-57. [5] 潘毅凡.中国产业二氧化碳排放的因素分解:2002~2017[J]. 经济学报, 2020,7(2):139-161. Pan Y F. Factor Decomposition of CO2 Emission in China's Industry:2002~2017[J]. China Journal of Economics, 2020,7(2):139-161. [6] 黄琳琳,王远,张晨,等.闽三角地区碳排放时空差异及影响因素研究[J]. 中国环境科学, 2020,40(5):2312-2320. Huang L L, Wang Y, Zhang C, et al. A spatial-temporal decomposition analysis of CO2 emissions in Fujian Southeast Triangle Region[J]. Chinese Environmental Science, 2020,40(5):2312-2320. [7] 陈亮,张楠,王一帆,等.京津冀地区碳排放强度变化驱动因素及归因分析[J]. 中国环境科学, 2023,43(8):4382-4394. Chen L, Zhang N, Wang Y F, et al. Driving factors and attribution analysis of carbon emission intensity change in Beijing-Tianjin-Hebei region[J]. China Environmental Science, 2023,43(8):4382-4394. [8] 刘浩东,邱微,陈爽.黑龙江省能源碳排放核算及驱动因素分析[J/OL]. 中国环境科学. Liu H D, Qiu W, Chen S. Accounting and Driving Factors Analysis of Energy Carbon Emissions in Heilongjiang Province[J/OL]. China Environmental Science. [9] 苏凯,陈毅辉,范水生,等.市域能源碳排放影响因素分析及减碳机制研究-以福建省为例[J]. 中国环境科学, 2019,39(2):859-867. Su K, Chen Y H, Fan S S, et al. Influencing factors and reduction mechanism of carbon emissions at the city-range:An empirical study on Fujian province[J]. China Environmental Science, 2019,39(2):859-867. [10] 信猛,陈菁泉,彭雪鹏,等.农业碳排放驱动因素——区域间贸易碳排放转移网络视角[J]. 中国环境科学, 2023,43(3):1460-1472. Xin M, Chen J Q, Peng X P, et al. Driving factors of agricultural carbon emission:From the perspective of interregional trade carbon emission transfer network[J]. China Environmental Science, 2023, 43(3):1460-1472. [11] 刘险峰.中国工业部门碳排放增长影响因素的动态分析[J]. 求索, 2017,(7):86-90. LIU X F. A dynamic analysis of the factors influencing the growth of carbon emissions from the industrial sector in China[J]. Seeker, 2017,(7):86-90. [12] 付华,李国平,朱婷.中国制造业行业碳排放:行业差异与驱动因素分解[J]. 改革, 2021,(5):38-52. Fu H, Li G P, Zhu T. Carbon emission of China's manufacturing industry:Industry differences and decomposition of driving factors[J]. Reform, 2021,(5):38-52. [13] Hoekstra R, van den Bergh, J C J M. Comparing structural and index decomposition analysis[J]. Energy Economics, 2003,25(1):39-64. [14] Su B, Ang B W. Structural decomposition analysis applied to energy and emissions:Some methodological developments[J]. Energy Economics, 2012,34(1):177-188. [15] Leontief W W, Ford D. Air pollution and the economic structure:Empirical results of input-output comparisons[M]. Harvard University, 1972. [16] 蔡博峰,曹丽斌,雷宇,等.中国碳中和目标下的二氧化碳排放路径[J]. 中国人口·资源与环境, 2021,31(1):7-14. Cai B F, Cao L B, Lei Y, et al. China's carbon emission pathway under the carbon neutrality target[J]. China Population, Resources and Environment, 2021,31(1):7-14. [17] 王深,吕连宏,张保留,等.基于多目标模型的中国低成本碳达峰、碳中和路径[J]. 环境科学研究, 2021,34(9):2044-2055. Wang S, Lv L H, Zhang B L, et al. Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences, 2021, 34(9):2044-2055. [18] 周原冰,杨方,余潇潇,等.中国能源电力碳中和实现路径及实施关键问题[J]. 中国电力, 2022,55(5):1-11. Zhou Y B, Yang F, Yu X X, et al. Realization pathways and key problems of carbon neutrality in China's energy and power system[J]. Electric Power, 2022,55(5):1-11. [19] 张希良,黄晓丹,张达,等.碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022,38(1):35-66. Zhang X L, Huang X D, Zhang D, et al. Research on the pathway and policies for China's energy and economy transformation toward carbon neutrality[J]. Journal of Management World, 2022,38(1):35-66. [20] 魏一鸣,余碧莹,唐葆君,等.中国碳达峰碳中和时间表与路线图研究[J]. 北京理工大学学报(社会科学版), 2022,24(4):13-26. Wei Y M, Yu B Y, Tang B J, et al. Roadmap for achieving China's carbon peak and carbon neutrality pathway[J]. Journal of Beijing Institute of Technology (Social sciences edition), 2022,24(4):13-26. [21] 黄震,谢晓敏,张庭婷.双碳背景下我国中长期能源需求预测与转型路径研究[J]. 中国工程科学, 2022,24(6):8-18. Huang Z, Xie X M, Zhang T T. Medium- and long-term energy demand of China and energy transition pathway toward carbon neutrality[J]. Strategic Study of CAE, 2022,24(6):8-18. [22] 严刚,郑逸璇,王雪松,等.基于重点行业/领域的我国碳排放达峰路径研究[J]. 环境科学研究, 2022,35(2):309-319. Yan G, Zheng Y X, Wang X S, et al. Pathway for carbon dioxide peaking in China based on sectoral analysis[J]. Research of Environmental Sciences, 2022,35(2):309-319. [23] 魏泓屹,卓振宇,张宁,等.中国电力系统碳达峰·碳中和转型路径优化与影响因素分析[J]. 电力系统自动化, 2022,46(19):1-12. Wei H Y, Zhuo Z Y, Zhang N, et al. Transition path optimization and influencing factor analysis of carbon emission peak and carbon neutrality for power system of China[J]. Automation of Electric Power Systems, 2022,46(19):1-12. [24] 禹湘,娄峰,谭畅.基于CIE-CEAM模型的中国工业双碳路径模拟[J]. 中国人口·资源与环境, 2022,32(7):49-56. Yu X, Lou F, Tan C. A simulation study of the pathway of achieving the 'dual carbon' goals in China's industrial sectors based on the CIECEAM Model[J]. China Population, Resources and Environment, 2022,32(7):49-56. [25] 李晋,谢璨阳,蔡闻佳,等.碳中和背景下中国钢铁行业低碳发展路径[J]. 中国环境管理, 2022,14(1):48-53. Li J, Xie C Y, Cai W J, Wang C. Low carbon development pathway of China's iron and steel industry under the vision of carbon neutrality-Consensus and uncertainty[J]. Chinese Journal of Environmental Management, 2022,14(1):48-53. [26] 黄晟,王静宇,李振宇.碳中和目标下石油与化学工业绿色低碳发展路径分析[J]. 化工进展, 2022,41(4):1689-1703. Huang S, Wang J Y, Li Z Y. Analysis of green and low-carbon development path of petroleum and chemical industry under the goal of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022,41(4):1689-1703. [27] 李晓易,谭晓雨,吴睿,等.交通运输领域碳达峰、碳中和路径研究[J]. 中国工程科学, 2021,23(6):15-21. Li X Y, Tan X Y, Wu R, et al. Paths for carbon peak and carbon neutrality in transport sector in China[J]. Strategic Study of CAE, 2021,23(6):15-21. [28] 陈锡康,杨翠红.投入产出技术[M]. 北京:科学出版社, 2011:107- 120. Chen X K, Yang C H. Input output technique[M]. Beijing:Science Press, 2011:107-120. [29] 高敏雪,李静萍,许健.国民经济核算原理与中国实践(第二版)[M]. 北京:中国人民大学出版社, 2007:113-121. Gao M X, Li J P, Xu J. System of National Accounts:Principles and China's Practice (The Second Edition)[M]. Beijing:Renmin University of China Press, 2007:113-121. [30] 王韬,马成,叶文奇.投入产出表、社会核算矩阵的更新方法研究[J]. 数量经济技术经济研究, 2011,28(11):112-123,137. Wang T, Ma C, Ye W Q. A study of methods for updating an input-output matrix or SAM[J]. The Journal of Quantitative & Technical Economics, 2011,(11):112-123,137. [31] 党玮.社会核算矩阵的数据平滑技术——RAS方法及其实现[J]. 统计与决策, 2009,285(9):157-159. Dang W. Data smoothing method of social accounting matrix:RAS method and realization[J]. Statistics and Decision, 2009,285(9):157- 159. [32] 李峰,胡剑波.中国产业部门隐含碳排放变化的影响因素动态研究——基于细分行业数据的实证分析[J]. 经济问题, 2021,(11):77-87. Li F, Hu J B. Dynamic analysis of influential factors on the change of embodied carbon emissions in China's industrial sectors:empirical research based on the industrial data[J]. On Economic Problems, 2021, (11):77-87. [33] 韩丽萍,李明达,刘炯.中国物流业碳排放影响因素及产业关联研究[J]. 北京交通大学学报(社会科学版), 2022,21(1):86-93. Han L P, Li M D, Liu J. On the influencing factors of carbon emission of China's logistics industry and its industrial linkage[J]. Journal of Beijing Jiaotong University (Social Sciences Edition), 2022,21(1):86- 93. [34] 孙艳芝,沈镭,钟帅,等.中国碳排放变化的驱动力效应分析[J]. 资源科学, 2017,39(12):2265-2274. Sun Y Z, Shen L, Zhong S, et al. Driving force analysis of carbon emission changes in China[J]. Resources Science, 2017,39(12):2265-2274. [35] 陈庆能,沈满洪,李崇岩.中国行业碳排放变动的影响因素研究——基于D&L简化模型[J]. 生态经济, 2017,33(7):14-18,24. Chen Q N, Shen M H, Li C Y. Research on the influencing factors of sectors' carbon emissions in China:based on simplified D&L model[J]. Ecological Economy, 2017,33(7):14-18,24. [36] Dietzenbacher E, Los B. Structural decomposition techniques:sense and sensitivity[J]. Economics Systems Research, 1998,10(4):307- 324. [37] Stone R. Multiple classifications in social accounting[J]. Bulletin Institute International Statistical, 1962,(39):215-231. [38] 祁神军,田丝女,张云波,等.基于RAS及I-O的建筑业隐含碳排放趋势及减排责任分担研究[J]. 生态经济, 2016,32(12):43-48. Qi S J, Tian S N, Zhang Y B, et al. Tendency for embodied carbon emissions and its reduction responsibility among the related industry of construction industry on the basis of RAS and I-O[J]. Ecological Economy, 2016,32(12):43-48. [39] 赵巧芝,闫庆友.基于投入产出的中国行业碳排放及减排效果模拟[J]. 自然资源学报, 2017,32(9):1528-1541. Zhao Q Z, Yan Q Y. Simulation of industrial carbon emissions and its reduction in China based on input-output model[J]. Journal of Natural Resources, 2017,32(9):1528-1541. [40] 徐大丰.低碳经济导向下的产业结构调整策略研究——基于上海产业关联的实证研究[J]. 华东经济管理, 2010,24(10):6-9. Xu D F. About the industry adjustment strategy to push the development of low-carbon economy——empirical analyse based on industry relavance using shanghai data[J]. East China Economic Management, 2010,24(10):6-9. [41] 张红霞,夏明,苏汝劼,等.中国时间序列投入产出表的编制:1981~2018[J]. 统计研究, 2021,38(11):3-23. Zhang H X, Xia M, Su R J, et al. The compilation of the time series input-output tables in China:1981~2018[J]. Statistical Research, 2021,38(11):3-23. [42] 祝宝良."十四五"时期我国经济发展和政策建议[J]. 财经智库, 2020,5(5):17-28,140. Zhu B L. China's economic development and policy suggestions during the 14th Five-Year Plan period[J]. Financial Minds, 2020,5(5):17-28,140. [43] 陈锡康,杨翠红,祝坤福,等.2022年中国经济增长速度的预测分析与政策建议[J]. 中国科学院院刊, 2022,37(1):68-77. Chen X K, Yang C H, Zhu K F, et al. Forecast of China's economic growth rate for 2022 and policy suggestions[J]. Bulletin of Chinese Academy of Sciences, 2022,37(1):68-77. [44] 国家信息中心.中国经济社会发展的中长期目标、战略与路径[EB/OL]. https://www.efchina.org/Reports-zh/report-lceg-20210207-4-zh/2021-02-07. State Information Center. The medium- and long-term goals, strategies and paths of China's economic and social development[EB/OL]. https://www.efchina.org/Reports-zh/report-lceg-20210207-4-zh/2021-02-07. [45] 姚洋.发展经济学(第二版)[M]. 北京:北京大学出版社, 2018:359-363. Yao Y. Development economics (The Second Edition)[M]. Beijing:Peking University Press, 2018:359-363. [46] 夏炎,杨翠红,陈锡康.中国能源强度变化原因及投入结构的作用[J]. 北京大学学报(自然科学版), 2010,46(3):442-448. Xia Y, Yang C H, Chen X K. Reasons of China's energy intensity change and roles of input structure[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010,46(3):442-448. [47] 沈利生.最终需求结构变动怎样影响产业结构变动——基于投入产出模型的分析[J]. 数量经济技术经济研究, 2011,28(12):82-95,114. Shen L S. How does the change of final demand structure affect the change of industrial structure?[J]. Journal of Quantitative & Technological Economics, 2011,28(12):82-95,114. |
|
|
|