|
|
The effect of benthic macroinvertebrates on the release of CO2 and CH4 in sediments of urban river |
SHI Si-jie1, LI hong-li1, YAO Jing-mei1, HAN Le1, TAN Qiu-jun1, LIU Ya-li2, WEI Bing1, YU Xue-song1, WANG Cheng-cheng1 |
1. Key Laboratory of ecological environment in the Three Gorges Reservoir area of Chongqing University, Chongqing 400045, China; 2. Chongqing Planning & Design Institute, Chongqing 401147, China |
|
|
Abstract Using the microcosms with Chironomus flaviplumus, Branchiura sowerbyi and Radix swinhoei of different perturbation functional groups, respectively, this study explored the influence of benthic bioturbation on key physio-chemical factors at the sediment-water interface (SWI) and on the release of CO2 and CH4. The following results were observed. Three macroinvertebrates differentially modified the content of dissolved oxygen (DO) of the interface and the aerobic/anaerobic decomposition of organic matter and the carbon conversion, which further affect the generation and release of CO2 and CH4. Firstly, there were significant differences in the release of CO2 and CH4, precisely as the following: B. sowerbyi exhibited the strongest promotion effect on the release of CO2 and CH4, and R. swinhoei showed no significant effect, while C. flaviplumus larvae inhibited the release of CH4. Secondly, B. sowerbyi consumed more carbon, promoted more release of CO2 and CH4, with its lowest DO infiltration depth creating a more favourable condition for the anaerobic decomposition of organic matter to produce more CH4. On the contrary, R. swinhoei, activating on the sediment surface, had relatively few change on the concentrations of DO, TC and TOC, and greenhouse gas. C. flaviplumus inhibited the release of CH4, probably due to inhibition of the anaerobic decomposition of organic matter under the increasing DO infiltration depth.
|
Received: 01 September 2023
|
|
|
|
|
[1] Bastviken D, Tranvik L J, Downing J A, et al. Freshwater methane emissions offset the continental carbon sink[J]. Science, 2011,331(6013):50. [2] Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters[J]. Nature. 2013,503(7476):355-359. [3] Battin T J, Lauerwald R, Bernhardt E S, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world[J]. Nature, 2023,613:449-459. [4] Rocher-Ros G, Stanley E H, Loken L C, et al. Global methane emissions from rivers and streams[J/OL]. Nature, 2023, https://doi.org/10.1038/s41586-023-06344-6. [5] Butman D, Raymond P A. Significant efflux of carbon dioxide from streams and rivers in the United States[J]. Nature Geoscience, 2011, 4(12):839-842. [6] Trimmer M, Grey J, Heppell C M, et al. River bed carbon and nitrogen cycling:State of play and some new directions[J]. Science of The Total Environment, 2012,434:143-158. [7] Yao G, Gao Q, Wang Z, et al. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China[J]. Science of The Total Environment, 2007, 376(1):255-266. [8] Lofton D D, Whalen S C, Hershey A E. Vertical sediment distribution of methanogenic pathways in two shallow Arctic Alaskan lakes[J]. Polar Biology, 2015,38(6):815-827. [9] 刘改过,曾勇,闫铁柱.典型城市化河流温室气体浓度及排放通量的时空特征研究[J/OL]. 中国环境科学, 2023,https://doi.org/10.19674/j.cnki.issn1000-6923.20230425.005. Liu G G, Zeng Y, Yan T Z. Seasonal and spatial variability of greenhouse gas concentrations and emissions in the typical urban river in Beijing, China[J/OL]. China Environmental Science, 2023, https://doi.org/10.19674/j.cnki.issn1000-6923.20230425.005. [10] 周旭东.城市淡水湿地二氧化碳和甲烷排放规律及影响因素探究[D]. 南京:南京信息工程大学, 2022. Zhou X D. Study on the rules and influencing factors of carbon dioxide and methane emission in urban freshwater wetlands[D]. Nanjing:Nanjing University of Information Science & Technology, 2022. [11] Wang G, Xia X, Liu S, et al. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions[J]. Water Research, 2021,189:116654. [12] Brown A M, Bass A M, Skiba U, et al. Urban landscapes and legacy industry provide hotspots for riverine greenhouse gases:A source-to-sea study of the River Clyde[J]. Water Research, 2023,236:119969. [13] Salgado J, Duc T A, Nga D T, et al. Urbanization and seasonality strengthens the CO2capacity of the Red River Delta, Vietnam[J]. Environmental Research Letters, 2022,17(10):104052. [14] Zhang Y, Wang J, Tao J, et al. Concentrations of dissolved organic matter and methane in lakes in Southwest China:Different roles of external factors and in-lake biota[J]. Water Research, 2022,225:119190. [15] 王丽婧,朱怡帆,田泽斌,等.不同时期东洞庭湖水域碳素赋存特征及其影响因素[J]. 中国环境科学, 2023,43(5):2542-2552. Wang L J, Zhu Y F, Tian Z B, et al. Characteristics of carbon storage and its influencing factors in waters of East Dongting Lake in different periods[J]. China Environmental Science, 2023,43(5):2542-2552. [16] Schrier-Uijl A P, Veraart A J, Leffelaar P A, et al. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands[J]. Biogeochemistry, 2011,102(1-3):265-279. [17] Huttunen J T, Vaisanen T S, Hellsten S K, et al. Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs[J]. Boreal Environment Research, 2006,11(1):27-34. [18] Mermillod-Blondin F. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems[J]. Journal of the North American Benthological Society, 2011,30(3):770-778. [19] Gerino M, Stora G, Francois-Carcaillet F, et al. Macro-invertebrate functional groups in freshwater and marinesediments:A common mechanistic classification[J]. Vie Et Milieu-life And Environment, 2003,53(4):221-231. [20] 吴方同,陈锦秀,闫艳红,等.水丝蚓生物扰动对东洞庭湖沉积物氮释放的影响[J]. 湖泊科学, 2011,23(5):731-737. Wu F T, Chen J X, Yan Y H, et al. The influence of Limnodrilus hoffmeisteri bioturbation on nitrogen release from sediments in the East Lake Dongting[J]. Journal of Lake Sciences, 2011,23(5):731-737. [21] Boeker C, Lueders T, Mueller M, et al. Alteration of physico-chemical and microbial properties in freshwater substrates by burrowing invertebrates[J]. Limnologica, 2016,59:131-139. [22] Gautreau E, Volatier L, Nogaro G, et al. The influence of bioturbation and water column oxygenation on nutrient recycling in reservoir sediments[J]. Hydrobiologia, 2020,847(4):1027-1040. [23] Nogaro G, Harris A M, Steinman A D. Alum application, invertebrate bioturbation, and sediment characteristics interact to affect phosphorus exchange in eutrophic ecosystems[J]. Freshwater Science, 2016,35(2):597-610. [24] 商景阁.底栖生物扰动对太湖沉积物水界面氮迁移转化影响研究[D]. 南京:中国科学院南京地理与湖泊研究所, 2010. Shang J G. Biodisturbation effect on transportation and transformation of nitrogen on sediment-water interface in Lake Taihu[D]. Nanjing:Nanjing Institute of Geography and Lakes, Chinese Academy of Sciences, 2010. [25] 王元元.生物扰动对河床沉积物营养盐释放及渗透性的影响[D]. 西安:西北大学, 2016. Wang Y Y. The effect of invertebrate bioturbation on nutrient release and permeability of streambed sediment[D]. Xi'an:Northwest University, 2016. [26] Mermillod-Blondin F, Gerino M, Sauvage S, et al. Influence of nontrophic interactions between benthic invertebrates on river sediment processes:a microcosm study[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004,61(10):1817-1831. [27] Jones R I, Grey J. Biogenic methane in freshwater food webs[J]. Freshwater Biology, 2011,56(2):213-229. [28] 曹正光,蒋忻坡.几种环境因子对梨形环棱螺的影响[J]. 上海海洋大学学报, 1998,(3):200-205. Cao Z G, Jiang X P. The influence of environmental factors on Bellamya purificate[J]. Journal of Shanghai Fisheries University, 1998,7(3):200-205. [29] 贺湛斐,童春富.太浦河大型底栖动物群落组成及时空分布特征[J/OL]. 生态学报, 2023,23(11),https://kns.cnki.net/kcms/detail/11.2031.0.20230518.0907.001.html. He Z F, Tong C F. Community composition and spatio-temporal distribution characteristics of benthic macroinvertebrates in Taipu River[J/OL]. Acta Ecologica Sinica, 2023,23(11), https://kns.cnki.net/kcms/detail/11.2031.0.20230518.0907.001.html. [30] 阳敏,熊芳园,陆颖,等.长江源区典型河流及湖泊丰水期底栖动物群落格局与驱动因子分析[J]. 中国环境监测, 2023,39(2):11-20. Yang M, Xiong F Y, Lu Y, et al. Macroinvertebrate assemblage patterns and driving factors in typical rivers and lakes of the source region of the Yangtze River During the Wet Period[J]. Environmental Monitoring in China, 2023,39(2):11-20. [31] 吴昱甫,何勇,邵勇,等.入太湖河道大型底栖动物群落结构及水质生物学评价[J]. 环境监测管理与技术, 2023,35(1):26-31. Wu Y P, He Y, Shao Y, et al. Macroinvertebrate community structure and water quality biological evaluation in rivers entering Taihu Lake[J]. The Administration and Technique of Environmental Monitering, 2023,35(1):26-31. [32] 温舒珂,彭凯,龚志军,等.近40年来太湖梅梁湾底栖动物群落演变特征及驱动因素[J]. 湖泊科学, 2023,35(2):599-609. Wen S K, Peng K, Gong Z J, et al. Succession of macrozoobenthic communities and its drivers in Meiliang Bay of Lake Taihu during the past 40 years[J]. Journal of Lake Sciences, 2023,35(2):599-609. [33] 蔡永久,龚志军,秦伯强.太湖大型底栖动物群落结构及多样性[J]. 生物多样性, 2010,18(1):50-59. Cai Y J, Gong Z J, Qin B Q. Community structure and diversity of macrozoobenthos in Lake Taihu, a large shallow eutrophic lake in China[J]. Biodiversity Science, 2010,18(1):50-59. [34] 赵蕾.草鱼复合养殖系统沉积物-水界面碳、氮、磷动态变化的初步研究[D]. 青岛:中国海洋大学, 2011. Zhao L. Study on distribution of carbon, nitrogen and phosphorus in sediment-water in Grass carp (Ctenopharyngodon idellus) polyculture system[D]. Qingdao:Ocean University of China, 2011. [35] 白小霞.三峡库区支流御临河沉积物碳素迁移转化与驱动机制研究[D]. 重庆:重庆大学, 2022. Bai X X. Study on Migration and transformation of sediment carbon as well as the driving mechanism in Yulin River, a tributary of the Three Gorges Reservoir[D]. Chongqing:Chongqing University, 2022. [36] 徐金兰,田桂永,李媛媛.外加碳源促进微生物群落降解土壤中的石油烃[J]. 环境科学与技术, 2022,45(8):166-177. Xu J L, Tian G Y, Li Y Y. Carbon sources addition to promote degradation of petroleum hydrocarbons in soil by microbial community[J]. Environmental Science & Technology, 2022,45(8):166-177. [37] 李杰.底泥在碳循环中的作用及影响因素模拟实验研究[D]. 北京:中国地质大学(北京), 2016. Li J. Laboratory simulation experiment on sediment effect and influence factors in cabon cycling[D]. Beijing:China University of Geosciences (Beijing), 2016. [38] Mermillod-Blondin F, Nogaro G, Vallier F, et al. Laboratory study highlights the key influences of stormwater sediment thickness and bioturbation by tubificid worms on dynamics of nutrients and pollutants in stormwater retention systems[J]. Chemosphere, 2008, 72(2):213-223. [39] Mermillod-Blondin F, Gérino M, Châtelliers M C, et al. Functional diversity among 3 detritivorous hyporheic invertebrates:an experimental study in microcosms[J]. Journal of the North American Benthological Society, 2002,21(1):132-149. [40] Shang J, Zhang L, Shi C, et al. Influence of Chironomid Larvae on oxygen and nitrogen fluxes across the sediment-water interface (LakeTaihu, China)[J]. Journal of Environmental Sciences, 2013, 25(5):978-985. [41] Marmonier P, Archambaud G, Belaidi N, et al. The role of organisms in hyporheic processes:gaps in current knowledge, needs for future research and applications[J]. Annales de Limnologie-International Journal of Limnology, 2012,48(3):253-266. [42] Ma Y, Wang Z, Ma T, et al. Spatial distribution characteristics and influencing factors of organic carbon in sediments of Tongshun River riparian zone[J]. Chemosphere (Oxford), 2020,252:126322. [43] Berryman E M, Venterea R T, Baker J M, et al. Phosphorus and greenhouse gas dynamics in a drained calcareous wetland soil in minnesota[J]. Journal of Environmental Quality, 2009,38(5):2147-2158. [44] 高杰,黄屿玥,韦冰,等.底栖动物(苏氏尾鳃蚓Branchiura sowerbyi 和椭圆萝卜螺Radix swinhoei)对不同氮负荷程度沉积物脱氮的影响[J]. 环境科学学报, 2022,42(11):202-210. Gao J, Huang Y Y, Wei B, et al. Effect of macroinvertebrates (Branchiura sowerbyi and Radix swinhoei) on nitrogen removal of sediment with varying nitrogen load levels[J]. Acta Scientiae Circumstantiae, 2022,42(11):202-210. [45] Pigneret M, Mermillod-Blondin F, Volatier L, et al. Urban pollution of sediments:Impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes[J]. Science of The Total Environment, 2016,568:196-207. [46] Samuiloviene A, Bartoli M, Bonaglia S, et al. The effect of Chironomid Larvae on nitrogen cycling and microbial communities in soft sediments[J]. Water (Basel), 2019,11(9):1931. [47] Leal J J F, Furtado A L D S, de Assis Esteves F, et al. The role of Campsurus notatus (Ephemeroptera:Polymitarcytidae) bioturbation and sediment quality on potential gas fluxes in a tropical lake[J]. Hydrobiologia, 2007,586:143-154. [48] 徐晓.淡水螺类对湿地微生物介导的甲烷排放的影响[D]. 上海:上海师范大学, 2013. Xu X. The effects of freshwater snail on wetland methane emission[D]. Shanghai:Shanghai Normal University, 2013. [49] 孙芳,郑忠明,陆开宏,等.铜锈环棱螺(Bellamya aeruginosa)生物扰动对藻华水体沉积物微生物群落结构的影响[J]. 海洋与湖沼, 2012,43(2):357-362. Sun F, Zheng Z M, Lu K H, et al. Effects of snail Bellamya aeruginosa bioturbation on microbial community in the sediment of algal bloom water[J]. Oceanologia et Limnologia Sinica, 2012,43(2):357-362. [50] Bezerra M P, Mcginnis D F, Bezerra-Neto J F, et al. Is it stochastic? Chaoborus larvae bioturbation likely affect the timing of daily methane (CH4) ebullitive flux in a tropical reservoir[J]. Hydrobiologia, 2020,847(15):3291-3308. [51] Li C, Ding S, Cai Y, et al. Decrease in macrofauna density increases the sediment phosphorus release and maintains the high phosphorus level of water column in Lake Taihu:A case study on Grandidierella taihuensis[J]. Water Research, 2022,225:119193. |
|
|
|