|
|
Research progress of biomass energy field based on bibliometric investigation |
XIN Bo-da1, LÜ Lian-hong1, WANG Si-yi1, DONG Jing-jing1, ZHANG Nan2, YANG Chao3 |
1. Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; 3. School of Economics and Management, Beijing Forestry University, Beijing 100083, China |
|
|
Abstract To comprehensively understand the evolutionary trends, current status, and topical issues within the realm of biomass energy research, this study employs bibliometric analysis and data mining techniques on biomass energy-related literature from 1993 to 2023, utilizing the Web of Science core collection database. The obtained results are subsequently visualized and analyzed using CiteSpace software. The findings of this study are as follows: Biomass energy research has progressively garnered attention on a global scale, with a consistent rise in research output and a substantial allocation of funding resources. The international community has established a robust collaborative network centered around biomass energy research. Notably, cooperative relationships at the national level exhibit distinct regional characteristics, while collaborations among research institutions demonstrate a prominent "double star distribution" pattern influenced by temporal dynamics. The research endeavors in biomass energy have evolved from theoretical investigations to interdisciplinary applied research encompassing physics, materials science, chemistry, and biology. Key technologies and emerging frontiers in biomass energy research for the forthcoming stage include biomass carbon capture and storage technology, and microbial photosynthesis hydrogen production technology.
|
Received: 12 September 2023
|
|
|
|
|
[1] IEA (2022). Bioenergy[EB/OL]. https://www.iea. org/energy-system/renewables/bioenergy. [2] 马隆龙,唐志华,汪丛伟,等.生物质能研究现状及未来发展策略[J]. 中国科学院院刊, 2019,34(4):434-442. Ma L L, Tang Z H, Wang C, et al. Research status and future development strategy of biomass energy[J]. Bulletin of Chinese Academy of Sciences, 2019,34(4):434-442. [3] Herbert G M, Krishnan A U. Quantifying environmental performance of biomass energy[J]. Renewable & Sustainable Energy Reviews, 2016,59:292-308. [4] Zafar M W, Sinha A, Ahmed Z, et al. Effects of biomass energy consumption on environmental quality:The role of education and technology in Asia-Pacific Economic Cooperation countries[J]. Renewable and Sustainable Energy Reviews, 2021,142:110868. [5] Bilgili F, Kocak E, Bulut Ü, et al. Can biomass energy be an efficient policy tool for sustainable development?[J]. Renewable and Sustainable Energy Reviews, 2016,71:830-845. [6] Hung N T. Biomass energy consumption and economic growth:insights from BRICS and developed countries[J]. Environmental Science and Pollution Research, 2022,29(20):30055-30072. [7] 王斯一,白梓函,吕连宏,等.基于政策工具的中国生物质发电补贴政策评估[J]. 环境工程技术学报, 2021,11(6):1241-1249. Wang S Y, Bai Z H, Lv L H, et al. Evaluation of China's biomass power generation subsidy policy based on policy tools[J]. Journal of Environmental Engineering Technology, 2021,11(6):1241-1249. [8] Roy P, Dias G. Prospects for pyrolysis technologies in the bioenergy sector:A review[J]. Renewable and Sustainable Energy Reviews, 2017,77:59-69. [9] 于志勇,王新刚,吴高磊,等.与燃煤电站和S-CO2循环耦合的生物质气化发电系统性能分析[J]. 洁净煤技术, 2023,20(9):38-50. Yu Z Y, Wang X G, Wu G L, et al. Performance analysis of a biomass gasification power generation system integrated with coal-fired power plant and S-CO2 cycle[J]. Clean Coal Technology, 2023,20(9):38-50. [10] 谭增强,牛国平,王一坤,等.生物质直燃发电大气污染物超低排放技术路线分析[J]. 热力发电, 2021,50(10):101-107. Tan Z Q, Niu G P, Wang Y K, et al. Analysis of technical route for ultra-low emission of air pollutants in biomass direct-fired power plants[J]. Thermal Power Generation, 2021,50(10):101-107. [11] Lauri P, Havlik P, Kindermann G, et al. Woody biomass energy potential in 2050[J]. Energy Policy, 2014,66:19-31. [12] Hiloidhari M, Das D, Baruah D C. Bioenergy potential from crop residue biomass in India[J]. Renewable and Sustainable Energy Reviews, 2014,32:504-512. [13] Src A, Hco A, Kwc B, et al. Sustainable approaches for algae utilisation in bioenergy production[J]. Renewable Energy, 2018,129:838-852. [14] 陈悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015,33(2):242-253. Chen Y, Chen C M, Liu Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015,33(2):242-253. [15] 李杰,陈超美.CiteSpace:科技文本挖掘及可视化[M]. 北京:首都经济贸易大学出版社, 2017. [16] 刘连华,欧阳威,何孟常,等.基于文献计量的锑对农作物影响研究趋势[J]. 中国环境科学, 2022,42(10):4798-4806. Liu L H, Ouyang W, He M C, et al. Research trends in effects of antimony on crops based on bibliometrics[J]. China Environment Science, 2022,42(10):4798-4806. [17] 张楠,吕连宏,王斯一,等.基于文献计量分析的碳中和研究进展[J]. 环境工程技术学报, 2023,13(2):464-472. Zhang N, Lv L H, Wang S Y, et al. Analysis of research progress in carbon neutrality based on bibliometrics[J]. Journal of Environmental Engineering Technology, 2023,13(2):464-472 [18] Johansson J, Lundqvist U. Estimating Swedish biomass energy supply[J]. Biomass & Bioenergy, 1999,17(2):85-93. [19] Amoo-gottfried K, Hall D O. A biomass energy flow chart for sierra leone[J]. Biomass and Bioenergy, 1999,16(5):361-376. [20] Hoogwijk M, Faaij A, Eickhout B, et al. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios[J]. Biomass & Bioenergy, 2005,29(4):225-257. [21] 刘刚,沈镭.中国生物质能源的定量评价及其地理分布[J]. 自然资源学报, 2007,22(1):9-19. Liu G, Shen L. Quantitive appr aisal of biomass energy and its geogr aphical distribution in China[J]. Journal of Natural Resource, 2007, 22(1):9-19. [22] IPCC. Land use, land use change and forestry special report, inter-government panel onclimate change[M]. Cambridge:Cambridge University Press, 2000. [23] Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass[J]. Science, 2006,314(5805):1598-1600. [24] Mckendry P. Energy production from biomass (part 3):gasification technologies[J]. Bioresource Technology:Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies, 2002,83(1):55-63. [25] Marrison C I, Larson E D. A preliminary analysis of the biomass energy production potential in Africa in 2025 considering projected land needs for food production[J]. Biomass & Bioenergy, 1996,10(5):337-351. [26] Mclaren J S. Crop biotechnology provides an opportunity to develop a sustainable future[J]. Trends in Biotechnology, 2005,23(7):339-342. [27] Lucia E, Roland C, Philip S, et al. Developing a sustainability framework for the assessment of bioenergy systems[J]. Energy Policy, 2007,35(12):6075-6083. [28] Kretschmer B, Peterson S. Integrating bioenergy into computable general equilibrium models-A survey[J]. Energy Economics, 2010, 32(3):673-686. [29] Cosic B, Stanic Z, Duic N. Geographic distribution of economic potential of agricultural and forest biomass residual for energy use:Case study Croatia[J]. Energy, 2011,36(4):2017-2028. [30] Nonhebel S. Global food supply and the impacts of increased use of biofuels[J]. Energy, 2012,37(1):115-121. [31] Zhan J, Rong J, Wang Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect[J]. International Journal of Hydrogen Energy, 2016,42(12):8505-8517. [32] Lancaster K M, Caranto J D, Majer S H, et al. Alternative bioenergy:updates to and challenges in nitrification metalloenzymology[J]. Joule, 2018,2(3):421-441. [33] Gupta K. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer[J]. Journal of thermal analysis and calorimetry, 2019,137(4):1431-1441. [34] Tawfik A, Niaz H, Qadeer K, et al. Valorization of algal cells for biomass and bioenergy production from wastewater:Sustainable strategies, challenges, and techno-economic limitations[J]. Renewable and Sustainable Energy Reviews, 2022,157:112024. [35] 郭祥,李瑞祎,张蕊,等.基于文献计量的生物质气化研究发展态势分析[J]. 环境工程, 2022,40(7):232-239,131. Guo X, Li R Y, Zhang R, et al. Research advances in biomass gasification based on bibliometric analysis[J]. Environmental Engineering, 2022,40(7):232-239,131. [36] Zhou Q, Kong H B, He B M, et al. Bibliometric analysis of bronchopulmonary dysplasia in extremely premature infants in the web of science database using citespace software[J]. Front Pediatr, 2021,9:705033. [37] 钱金鑫,李生才,甘强,等.2018~2020年我国安全科学国际论文的文献共被引聚类:知识基础与研究方向[J]. 安全与环境学报, 2021,21(5):2336-2342. Qian J X, Li S C, Gan Q, et al. Distribution and origin of antibiotic resistance genes in typical freshwater environments[J]. Journal of Safety and Environment, 2021,21(5):2336-2342. [38] 乔宇,闫振飞,冯承莲,等.基于文献计量学的环境内分泌干扰物研究热点分析[J]. 环境科学研究, 2022,35(2):424-434. Qiao Y, Yan Z F, Feng C L, et al. Research focus analysis of endocrine disrupting chemicals (EDCs) based on bibliometrics[J]. Research of Environmental Sciences, 2022,35(2):424-434. [39] Abrahamson L P, Robison D J, Volk T A, et al. Sustainability and environmental issues associated with willow bioenergy development in New York (USA)[J]. Biomass & Bioenergy, 1998,15(1):17-22. [40] Khanna M, Crago C L, Black M. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy[J]. Interface Focus, 2011,1(2):233. [41] Fargione J, Hill J, Tilman D, et al. Land Clearing and the Biofuel Carbon Debt[J]. Science, 2008,319(5867):1235-1238. [42] Ort D R, Merchant S S, Alric J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand.[J]. Proc Natl Acad Sci USA, 2015,112(28):8529-8536. [43] Adler P R, Grosso S, Parton W J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems[J]. Ecological Applications, 2007,17(3):675-691. [44] Logan B E, Rabaey K. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies[J]. Science, 2012,337(6095):686-690. [45] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. The Plant Journal, 2008,54(4):621-639 [46] Chong F K, Andiappan V, Ng D K S, et al. Design of ionic liquid as carbon capture solvent for a bioenergy system:integration of bioenergy and carbon capture systems[J]. ACS Sustainable Chemistry & Engineering, 2017,5(6):5241-5252. [47] Lim T C, Cuellar A, Langseth K, et al. Technoeconomic analysis of negative emissions bioenergy with carbon capture and storage through pyrolysis and bioenergy district heating infrastructure[J]. Environment Science & Technology, 2022,56(3):1875-1884. [48] Calicioglu O, Brennan R A. Sequential ethanol fermentation and anaerobic digestion increases bioenergy yields from duckweed[J]. Bioresour Technol, 2018,257:344-348. [49] Fuess L T, Garcia M L, et al. Anaerobic digestion of stillage to produce bioenergy in the sugarcane-to-ethanol industry[J]. Environmental Technology, 2013,35(3):333-339. [50] Fridahl M, Fonoll X, Khanal S K, et al. Bioenergy with carbon capture and storage (BECCS):Global potential, investment preferences, and deployment barriers[J]. Energy Research & Social ence, 2018,42:155-165. [51] Shrestha S, Fonoll X, Khanal S K, et al. Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion:Current status and future perspectives-Science Direct[J]. Bioresource Technology, 2017,245:1245-1257. |
|
|
|