|
|
Composition characteristics of volatile organic compounds and contribution to secondary pollution formation in Hangzhou |
QIAN Si-yao1, GUAN Jing-wen1, GUAN Lu1, ZHANG Tian2, WANG Yun-yun2, SHEN Jian-dong2, YU Xing-na1 |
1. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Hangzhou Ecological Environment Monitoring Center of Zhejiang Province, Hangzhou 310012, China |
|
|
Abstract Based on the observation data of atmospheric volatile organic compounds (VOCs) in urban areas of Hangzhou from January to December 2021, the chemical composition and the pollution characteristics of VOCs were analyzed, using the positive matrix factorization method (PMF) to do a source analysis survey, the ozone formation potential (OFP) and secondary organic aerosol formation potential (AFP) of VOCs were estimated by using the maximum incremental reactivity (MIR) and aerosol formation coefficient (FAC), their secondary pollution generation contribution was quantitatively evaluated. The results showed that the average volume fraction of atmospheric VOCs in Hangzhou during the observation period was 30.65×10-9, alkanes and halogenated hydrocarbons were the main components, accounting for 49.23% and 24.47% respectively, the top 10VOCs species were mainly C2~C4alkanes, C7~C8aromatic hydrocarbons and ethylene, of which propane, ethane and dichloromethane accounted for 34% of the total top 10species. The source analysis results show that the main sources of VOCs in Hangzhou are combustion source, solvent use source, industrial emission source, oil and gas emission source and motor vehicle exhaust emission sources. The total OFP of VOCs in Hangzhou was 50.56×10-9, of which ethylene, 1-ethyl-3-methylbenzene and toluene were the main contributing components of OFP. The contribution of aromatic hydrocarbons to the formation potential of secondary organic aerosols was 91.52%, indicating that aromatic hydrocarbons are the most important SOA precursors, so controlling the emission from motor vehicle exhaust and VOCs generated during solvent use can effectively reduce the generation of SOA.
|
Received: 02 September 2023
|
|
|
|
|
[1] 沈建东,叶旭红,朱英俊,等.杭州市大气VOCs浓度特征及其化学活性研究[J]. 中国环境监测, 2020,36(5):80-87. Shen J D, Ye X H, Zhu Y J, et al. Characteristics of atmospheric VOCs and their chemical activities in Hangzhou[J]. Environmental Monitoring in China, 2020,36(5):80-87. [2] 牛月圆,刘倬诚,李如梅,等.阳泉市区夏季挥发性有机物污染特征、来源解析及其环境影响[J]. 环境科学, 2020,41(7):3066-3075. Niu Y Y, Liu Z C, Li R M, et al. Characteristics, source apportionment, and environmental impact of volatile organic compounds in summer in Yangquan[J]. Environmental Science, 2020,41(7):3066-3075. [3] Zhou M M, Jiang W, Gao W D, et al. A high spatiotemporal resolution anthropogenic VOC emission inventory for Qingdao City in 2016 and its ozone formation potential analysis[J]. Process Safety and Environmental Protection, 2020,139:147-160. [4] 严仁嫦,叶辉,林旭,等.杭州市臭氧污染特征及影响因素分析[J]. 环境科学学报, 2018,38(3):1128-1136. Yan R E, Ye H, Lin X, et al. Characteristics and influence factors of ozone pollution in Hangzhou[J]. Acta Scientiae Circumstantiae, 2018,38(3):1128-1136. [5] 景盛翱,高雅琴,沈建东,等.杭州市城区挥发性有机物污染特征及反应活性[J]. 环境科学, 2020,41(12):5306-5315. Jing S A, Gao Y Q, Shen J D, et al. Characteristics of reactivity of Ambient of VOCs in Urban Hangzhou, China[J]. Environmental Science, 2020,41(12):5306-5315. [6] 洪盛茂,焦荔,何曦,等.杭州典型区域C2-12质量浓度变化及臭氧潜势量分析[J]. 环境科学研究, 2009,22(8):938-943. Hong S M, Jiao L, He X, et al. Variations in mass concentrations and ozone formation potentials of C2-12 hydrocarbons in typical areas of Hangzhou, China[J]. Research of Environmental Sciences, 2009,22(8):938-943. [7] 王占山,李云婷,陈添,等.北京城区臭氧日变化特征及与前体物的相关性分析[J]. 中国环境科学, 2014,34(12):3001-3008. Wang Z S, Li Y T, Chen T, et al. Analysis on diurnal variation characteristics of ozone and correlations with its precursors in urban atmosphere of Beijing[J]. China Environmental Science, 2014, 34(12):3001-3008. [8] 陈珺,龚道程,廖彤,等.珠三角大气挥发性有机物的国庆效应及其源解析[J]. 中国环境科学, 2023,43(7):3265-3280. Chen J, Gong D C, Liao T, et al. National Day effect and source analysis of atmospheric volatile organic compounds in the Pearl River Delta region[J]. China Environmental Science, 2023,43(7):3265-3280. [9] Carter W P L. Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications[M]. California:California Air Resources Board Contract, 2010. [10] Grosjean D. In situ organic aerosol formation during a smog episode:estimated production and chemical functionality[J]. Atmospheric Environment, Part A, General Topics, 1992,26(6):953-963. [11] Grosjean D, Seinfeld J H. Parameterization of the formation potential of secondary organic aerosols[J]. Atmospheric Environment (1967), 1989,23(8):1733-1747. [12] 施雨其,郑凯允,丁玮婷,等.开封市城区冬季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 2023,44(4):1933-1942. Shi Y Q, Zheng K Y, Ding W T, et al. Pollution characteristics and source appointment of atmospheric VOCs in winter in Kaifeng City[J]. Environmental Science, 2023,44(4):1933-1942. [13] 库盈盈,任万辉,苏枞枞,等.沈阳市不同功能区挥发性有机物分布特征及臭氧生成潜势[J]. 环境科学, 2021,42(11):5201-5209. Ku Y Y, Ren W H, Su C C, et al. Pollution characteristics and ozone formation potential of ambient VOCs in different functional zones of Shenyang, China[J]. Environmental Science, 2021,42(11):5201-5209. [14] 杨笑笑,汤莉莉,张运江,等.南京夏季市区VOCs特征及O3生成潜势的相关性分析[J]. 环境科学, 2016,37(2):443-451. Yang X X, Tang L L, Zhang Y J, et al. Correlation Analysis Between Characteristics of VOCs and Ozone Formation Potential in Summer in Nanjing Urban District[J]. Environmental Science, 2016,37(2):443-451. [15] 张蕊,孙雪松,王裕,等.北京市城区夏季大气VOCs变化特征及臭氧生成潜势[J]. 环境科学, 2023,44(4):1954-1961. Zhang R, Sun X S, Wang Y, et al. Variation Characteristics and Ozone Formation Potential of Ambient VOCs in Urban Beijing in Summer[J]. Environmental Science, 2023,44(4):1954-1961. [16] 安俊琳,朱彬,王红磊,等.南京北郊大气VOCs变化特征及来源解析[J]. 环境科学, 2014,35(12):4454-4464. An J L, Zhu B, Wang H L, et al. Characteristics and Source Apportionment of Volatile Organic Compounds (VOCs) in the Northern Suburb of Nanjing[J]. Environmental Science, 2014,35(12):4454-4464. [17] 陆嘉晖,吴影,刘慧琳,等.南宁市冬季挥发性有机物特征及其来源分析[J]. 中国环境科学, 2022,42(8):3616-3625. Lu J H, Wu Y, Liu H L, et al. Characteristics and sources of volatile organic compounds (VOCs) in winter over Nanning of China[J]. China Environmental Science, 2022,42(8):3616-3625. [18] 张子金,林煜棋,张煜娴,等.南京毒性挥发性有机化合物夏冬季源解析及健康风险评估[J]. 环境科学, 2021,42(12):5673-5686. Zhang Z J, Lin Y Q, Zhang Y X, et al. Source analysis and health risk assessment of toxic volatile organic compounds in Nanjing in summer and winter[J]. Environmental Science, 2021,42(12):5673-5686. [19] 严茹莎,王红丽,黄成,等.上海市夏季臭氧污染特征及削峰方案[J]. 环境科学, 2021,42(8):3577-3584. Yan R S, Wang H L, Huang C, et al. Characteristics and control strategies on summertime peak ozone concentration in Shanghai[J]. Environmental Science, 2021,42(8):3577-3584. [20] 苏维峰,孔少飞,郑煌,等.武汉市夏季大气挥发性有机物实时组成及来源[J]. 环境科学, 2022,43(6):2966-2978. Su W F, Kong S F, Zheng H, et al. Real-time composition and sources of VOCs in summer in Wuhan[J]. Environmental Science, 2022,43(6):2966-2978. [21] 徐晨曦,陈军辉,姜涛,等.成都市区夏季大气挥发性有机物污染特征及来源解析[J]. 环境科学, 2020,41(12):5316-5324. Xu C X, Chen J H, Jiang T, et al. Characteristics and sources of atmospheric volatile organic compounds pollution in summer in Chengdu[J]. Environmental Science, 2020,41(12):5316-5324. [22] 张博韬,安欣欣,王琴,等.2015年北京大气VOCs时空分布及反应活性特征[J]. 环境科学, 2018,39(10):4400-4407. Zhang B T, An X X, Wang Q, et al. Temporal variation, spatial distribution,and reactivity characteristics of air VOCs in Beijing 2015[J]. Environmental Science, 2018,39(10):4400-4407. [23] 宋鑫,袁斌,王思行,等.珠三角典型工业区挥发性有机物(VOCs)组成特征:含氧挥发性有机物的重要性[J]. 环境科学, 2023,44(3):1336-1345. Song X, Yuan B, Wang S X, et al. Compositional characteristics of volatile organic compounds in typical industrial areas of the Pearl River Delta:Importance of oxygenated volatile organic compounds[J]. Environmental Science, 2023,44(3):1336-1345. [24] 张明明,邵旻,陈培林,等.长三角地区VOCs排放特征及其对大气O3和SOA的潜在影响[J]. 中国环境科学, 2023,43(6):2694-2702. Zhang M M, Shao M, Chen P L, et al. Characteristics of anthropogenic and biogenic VOCs emissions and their potential impacts on O3 and SOA in the Yangtze River Delta region[J]. China Environmental Science, 2023,43(6):2694-2702. [25] 江明,袁鸾,温丽容,等.春节与疫情管控期间珠三角VOCs的组成和来源变化[J]. 环境科学, 2022,43(4):1747-1755. Jiang M, Yuan L, Wen L R, et al. Variety of the composition and sources of VOCs during the spring festival and epidemic preservation in the Pearl River Delta[J]. Environmental Science, 2022,43(4):1747-1755. [26] 齐一谨,王玲玲,倪经纬,等.郑州市夏季大气VOCs污染特征及来源解析[J]. 环境科学, 2022,43(12):5429-5441. Qi Y J, Wang L L, Ni J W, et al. Characteristics and source appointment of ambient summer volatile organic compunds in Zhengzhou, China[J]. Environmental Science, 2022,43(12):5429-5441. [27] 孙世达,王博,孙露娜,等.江苏省高时空分辨率机动车排放清单构建及特征[J]. 中国环境科学, 2023,43(9):4490-4502. Sun S D, Wang B, Sun L N, et al. Development and characteristics of vehicle emission inventory with high spatiotemporal resolution in Jiangsu Province[J]. China Environmental Science, 2023,43(9):4490-4502. [28] Lyu X P, Chen N, Guo H, et al. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China[J]. Science of the Total Environment, 2016,541:200-209. [29] Vinciguerra T, Yao S, Dadzie J, et al. Regional air quality impacts of hydraulic fracturing and shale natural gas activity:evidence from ambient VOC observations[J]. Atmospheric Environment, 2015,110:144-150. [30] Hui L R, Liu X G, Tan Q W, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, central China[J]. Atmospheric Environment, 2018,192:55-71. [31] Yan Y L, Peng L, Li R M, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area:a study in Shuozhou, China[J]. Environmental Pollution, 2017,223:295-304. [32] Song Y, Shao M, Liu Y, et al. Source apportionment of ambient volatile organic compounds in Beijing[J]. Environmental Science and Technology, 2007,41(12):4348-4353. [33] 叶露,邰菁菁,俞华明.汽车工业区大气挥发性有机物(VOCs)变化特征及来源解析[J]. 环境科学, 2021,42(2):624-633. Ye L, Tai J J, Yu H M. Characteristics and source apportionment of volatile organic compounds (VOCs) in the automobile industrial park of Shanghai[J]. Environmental Science, 2021,42(2):624-633. [34] 段玉森.基于SOA和O3生成潜势的上海市VOCs优控物种研究[J]. 中国环境监测, 2020,36(2):138-147. Duan Y S. Study on the priority species of VOCs based on SOA and O3 formation potential[J]. Environmental Monitoring in China, 2020, 36(2):138-147. [35] 徐芯蓓,刘涛涛,徐玲玲,等.2017年厦门金砖会晤期间人为减排和气象条件变化对臭氧污染特征的影响[J]. 环境科学学报, 2020, 40(12):4380-4389. Xu X B, Liu T T, Xu L L, et al. Effects of emission control and changes in meteorological conditions on the characteristics of ozone pollution during the 2017 BRICS Summit in Xiamen[J]. Acta Scientiae Circumstantiae, 2020,40(12):4380-4389. [36] 乔月珍,陈凤,李慧鹏,等.连云港不同功能区挥发性有机物污染特征及臭氧生成潜势[J]. 环境科学, 2020,41(2):630-637. Qiao Y Z, Chen F, Li H P, et al. Characteristics of volatile organic compounds pollution and ozone generation potential in different functional areas of Lianyungang, China[J]. Environmental Science, 2020,41(2):630-637. [37] 王帅,崔建升,冯亚平,等.石家庄市挥发性有机物和臭氧的污染特征及源解析[J]. 环境科学, 2020,41(12):5325-5335. Wang S, Cui J S, Feng Y P, et al. Characteristics and source apportionment of VOCs and O3 in Shijiazhuang[J]. Environmental Science, 2020,41(12):5325-5335. [38] 陈雪,黄晓锋,朱波,等.深圳市秋季VOCs空间分布特征与关键减排物种[J]. 中国环境科学, 2021,41(9):4069-4076. Chen X, Huang X F, Zhu B, et al. Spatial distribution characteristics of VOCs and key emission reduction species in autumn Shenzhen[J]. China Environmental Science, 2021,41(9):4069-4076. [39] 张瑞旭,刘焕武,邓顺熙,等.宝鸡市秋冬季大气VOCs浓度特征及其O3和SOA生成潜势[J]. 中国环境科学, 2020,40(3):983-996. Zhang R X, Liu H W, Deng S X, et al. Characteristics of VOCs and formation potential of O3 and SOA in autumn and winter in Baoji, China[J]. China Environmental Science, 2020,40(3):983-996. [40] 林燕芬,段玉森,高宗江,等.基于VOCs加密监测的上海典型臭氧污染过程特征及成因分析[J]. 环境科学学报, 2019,39(1):126-133. Lin Y F, Duan Y S, Gao Z J, et al. Typical ozone pollution process and source identification in Shanghai based on VOCs intense measurement[J]. Acta Scientiae Circumstantiae, 2019,39(1):126-133. |
[1] |
ZHANG Jia-yue, KANG Na, SHAO Sheng-cheng, NIU Yu-wen, CHENG Hao, ZHANG Jia-xin, HAO Xiang, GAO Xian-liang, QI Bing. Ozone pollution in Hangzhou and the impact of typhoon fireworks process[J]. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(3): 1195-1203. |
|
|
|
|