|
|
Isolation and identification of epiphytic bacteria from Vallisneria natans and screening of functional strains |
LIANG Shu-ya1,2, CUI Chen-chen1, HU Si-wen1,2, ZENG Jin2, DING Cheng-cheng3, CUI Yi-bin3, ZHAO Da-yong1 |
1. The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China; 2. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 3. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China |
|
|
Abstract In order to explore the functional characteristics of epiphytic bacteria in submerged macrophytes, Vallisneria natans was selected to domesticate the bacterial community in indoor simulated wastewater, screening the rhizosphere and phyllosphere bacteria isolated from V. natans, combined with the 16S rRNA gene sequence analysis and identification results, 172 strains were isolated, purified and preserved (distributed in 5 phyla, 15 order and 42 genera), including 107 rhizosphere strains and 65 phyllosphere strains. 82 representative strains (distributed in 5 phyla, 30 genera and 47 species) were selected for nitrogen removal, phosphorus solubilization, indoleacetic acid production and organic matter removal function validation experiments. Finally, 10 high-efficiency ammonia nitrogen removal strains, 9 high-efficiency nitrate nitrogen removal strains, 12 strains with high-efficiency inorganic phosphorus-solubilizing ability, 11 strains with high-efficiency organic phosphorus-solubilizing ability, 11 strains of high IAA production and 10 high-efficiency organic matter removal strains were screened. The diversity of cultivable microorganisms in the rhizosphere and phyllosphere of V. natans is relatively abundant, the high-efficiency functional strains screened in this study have enriched our cognizance of the resources of epiphytic microorganisms in V. natans, laying the foundation for the development and application of submerged macrophytes synthetic microbial communities.
|
Received: 04 October 2023
|
|
|
|
|
[1] Kosten S, Lacerot G, Jeppesen E, et al. Effects of submerged vegetation on water clarity across climates[J]. Ecosystems, 2009,12(7):1117-1129. [2] Shehzadi M, Afzal M, Khan U M, et al. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria[J]. Water Research, 2014,58:152-159. [3] Wang C, Zheng S S, Wang P F, et al. Effects of vegetations on the removal of contaminants in aquatic environments:A review[J]. Journal of Hydrodynamics, 2014,26(4):497-511. [4] 郭雅倩,薛建辉,吴永波,等.沉水植物对富营养化水体的净化作用及修复技术研究进展[J].植物资源与环境学报, 2020,29(3):58-68. Guo Y Q, Xue J H, Wu Y B, et al. Research progress on purification effects and restoration technologies of submerged macrophytes on eutrophic water[J]. Journal of Plant Resources and Environment, 2020,29(3):58-68. [5] Jiang M Q, Zhou Y P, Wang N, et al. Allelopathic effects of harmful algal extracts and exudates on biofilms on leaves of Vallisneria natans[J]. Science of the Total Environment, 2019,655:823-830. [6] Li Q, Gu P, Zhang H, et al. Response of submerged macrophytes and leaf biofilms to the decline phase of Microcystis aeruginosa:Antioxidant response, ultrastructure, microbial properties, and potential mechanism[J]. Science of the Total Environment, 2020,699:134325. [7] Yang Y, Chen W, Yi Z Y, et al. The integrative effect of periphyton biofilm and tape grass (Vallisneria natans) on internal loading of shallow eutrophic lakes[J]. Environmental Science and Pollution Research, 2018,25(2):1773-1783. [8] Liu J Z, Liu W, Wang F W, et al. Redox zones stratification and the microbial community characteristics in a periphyton bioreactor[J]. Bioresource Technology, 2016,204:114-121. [9] Qiu D R, Wu Z B, Liu B Y, et al. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China[J]. Ecological Engineering, 2001, 18(2):147-156. [10] Eze M O, Thiel V, Hose G C, et al. Bacteria-plant interactions synergistically enhance biodegradation of diesel fuel hydrocarbons[J]. Communications Earth and Environment, 2022,3(1):192. [11] Tyagi M, da Fonseca M M R, de Carvalho C C C R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes[J]. Biodegradation, 2011,22(2):231-241. [12] 韩力平,王建龙,施汉昌,等.生物强化技术在难降解有机物处理中的应用[J].环境科学, 1999,20(6):100-102. Han L P, Wang J L, Shi H C, et al. Bioaugmentation for removal of recalcitrant organics[J]. Environmental Science, 1999,20(6):100-102. [13] Sarhan M S, Hamza M A, Youssef H H, et al. Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media-A review[J]. Journal of Advanced Research, 2019,19:15-27. [14] Jean-Christophe L, Grégory D, Matthieu M, et al. Culturing the human microbiota and culturomics[J]. Nature Reviews Microbiology, 2018,16(9):540-550. [15] Bai Y, Muller D B, Srinivas G, et al. Functional overlap of the Arabidopsis leaf and root microbiota[J]. Nature, 2015,528(7582):364-369. [16] Zhang J Y, Liu Y X, Guo X X, et al. High-throughput cultivation and identification of bacteria from the plant root microbiota[J]. Nature Protocols, 2021,16(2):988-1012. [17] Shafqat M, Khalid A, Mahmood T, et al. Evaluation of bacteria isolated from textile wastewater and rhizosphere to simultaneously degrade azo dyes and promote plant growth[J]. Journal of Chemical Technology and Biotechnology, 2017,92(10):2760-2768. [18] Riva V, Mapelli F, Syranidou E, et al. Root bacteria recruited by Phragmites australis in constructed wetlands have the potential to enhance Azo-Dye phytodepuration[J]. Microorganisms, 2019,7(10):1-21. [19] Zapata-Morales A L, Alfaro-De la Torre M C, Hernández-Morales A, et al. Isolation of cultivable bacteria associated with the root of Typha latifolia in a constructed wetland for the removal of diclofenac or naproxen[J]. Water, Air and Soil Pollution, 2020,231(8):423. [20] Hu R W, Zhao H M, Xu X H, et al. Bacteria-driven phthalic acid ester biodegradation:Current status and emerging opportunities[J]. Environment International, 2021,154:106560. [21] Li Z F, Bai X L, Jiao S, et al. A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance[J]. Microbiome, 2021,9(1):217. [22] Niu B, Paulson J N, Zheng X Q, et al. Simplified and representative bacterial community of maize roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(12):E2450-E2459. [23] Schmitz L, Yan Z C, Schneijderberg M, et al. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome[J]. The ISME Journal, 2022,16(8):1907-1920. [24] Liu Y, Wang H, Qian X, et al. Metagenomics insights into responses of rhizobacteria and their alleviation role in licorice allelopathy[J]. Microbiome, 2023,11(1):109. [25] 陈嗣威,郑海粟,张晟曼,等.不同植物组合对模拟污水厂尾水的净化效果及对根系微生物群落的影响[J].应用与环境生物学报, 2022, 28(2):387-393. Chen S W, Zheng H S, Zhang S M, et al. Effects of different plant combinations on purification effect of simulated wastewater treatment plant tail water and root microbial community[J]. Chinese Journal of Applied and Environmental Biology, 2022,28(2):387-393. [26] 李茜.好氧反硝化细菌的脱氮性能研究及其应用探索[D].北京:中国石油大学(北京), 2019. Li Q. Denitrification characteristics and application of aerobic denitrifier[D]. Beijing:China University of Petroleum (Beijing), 2019. [27] Zhu L, Ding W, Feng L J, et al. Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem[J]. Bioresource Technology, 2012,108:1-7. [28] 曹莹.湿地根际微生物对磷的转化释放及植物吸收的影响[D].南京:东南大学, 2018. Cao Y. Effects of wetland rhizosphere microorganisms on phosphorus transformation and release and plant uptake[D]. Nanjing:Southeast University, 2018. [29] 李斯琪.耐盐水处理功能菌的筛选鉴定及复合菌剂的构建优化[D].哈尔滨:哈尔滨工业大学, 2018. Li S Q. Research on screening and identification of salt-tolerant Microorganisms for water treatment and optimization of compound microbialagents[D]. Harbin:Harbin Institute of Technology, 2018. [30] 李兴杰.耐镉植物促生菌的分离、鉴定及其对镉吸附效应与机理研究[D].上海:上海交通大学, 2019. Li X J. Isolation and identification of Cd-resistant plant growth-promoting rhizobacteria and their adsorption effect and mechanism studies on cadmium[D]. Shanghai:Shanghai Jiao Tong University, 2019. [31] 李静,李文英.喹啉降解菌筛选及其对焦化废水强化处理[J].环境科学, 2015,36(4):1385-1391. Li J, Li W Y. Screening of a highly efficient quinoline-degrading strain and its enhanced biotreatment on coking waste water[J]. Environmental Science, 2015,36(4):1385-1391. [32] 柳晓东,朱海珍,姜民志,等.北京龙形水系三种沉水植物根际及叶际微生物群落特征[J].生物工程学报, 2021,37(10):3663-3674. Liu X D, Zhu H Z, Jiang M Z, et al. Characteristics of the rhizosphere and phyllosphere microbial community of three submerged plants in the dragon-shaped water system of Beijing[J]. Chinese Journal of Biotechnology, 2021,37(10):3663-3674. [33] Hu S W, He R J, He X W, et al. Niche-Specific Restructuring of Bacterial Communities Associated with Submerged Macrophyte under Ammonium Stress[J]. Applied and Environmental Microbiology, 2023,89(7):1-16. [34] 张梅婷,刘晋仙,苏嘉贺,等.苦草叶表附生和水体浮游细菌群落多样性格局及其影响因素[J].环境科学, 2023,44(1):252-261. Zhang M T, Liu J X, Su J H, et al. Diversity patterns and influencing factors of epibiotic in Vallisneria natans and planktonic bacteria communities[J]. Environmental Science, 2023,44(1):252-261. [35] Wang C, Wang H H, Li Y H, et al. Plant growth-promoting rhizobacteria isolation from rhizosphere of submerged macrophytes and their growth-promoting effect on Vallisneria natans under high sediment organic matter load[J]. Microbial Biotechnology, 2021,14(2):726-736. [36] 肖晶晶,郭萍,霍炜洁,等.反硝化微生物在污水脱氮中的研究及应用进展[J].环境科学与技术, 2009,32(12):97-102. Xiao J J, Guo P, Huo W J, et al. Application of denitrifying microbes to wastewater denitrification[J]. Environmental Science and Technology, 2009,32(12):97-102. [37] 李琳,岳春雷,张华,等.不同沉水植物净水能力与植株体细菌群落组成相关性[J].环境科学, 2019,40(11):4962-4970. Li L, Yue C L, Zhang H, et al. Correlation between water purification capacity and bacterial community composition of different submerged macrophytes[J]. Environmental Science, 2019,40(11):4962-4970. [38] Wei B H, Luo X, Ma W K, et al. Biological nitrogen removal and metabolic characteristics of a novel cold-resistant heterotrophic nitrification and aerobic denitrification Rhizobium sp. WS7[J]. Bioresource Technology, 2022,362:127756. [39] Rajta A, Bhatia R, Setia H, et al. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater[J]. Journal of Applied Microbiology, 2020,128(5):1261-1278. [40] 邹艳艳,张宇,李明智,等.一株异养硝化-好氧反硝化细菌的分离鉴定及脱氮活性研究[J].中国环境科学, 2016,36(03):887-893. Zou Y Y, Zhang Y, Li M Z, et al. Isolation and identification of a heterotrophic nitrification-aerobic denitrification bacterium and its denitrification ability[J]. China Environmental Science, 2016,36(3):887-893. [41] 魏渤惠,罗晓,吕鹏翼,等.高效异养硝化-好氧反硝化菌Glutamicibacter sp. WS1低温下对多种氮源的脱氮特性及氮代谢机制[J].环境科学, 2023,44(9):5006-5016. Wei B H, Luo X, Lv P Y, et al. Nitrogen removal characteristics and metabolism mechanism of high-efficiency cold-tolerant heterotrophic nitrification-aerobic denitrification bacterium Glutamicibacter sp. WS1for various nitrogen sources at low temperature[J]. Environmental Science, 2023,44(9):5006-5016. [42] 马莹,王玥,石孝均,等.植物促生菌在重金属生物修复中的作用机制及应用[J].环境科学, 2022,43(9):4911-4922. Ma Y, Wang Y, Shi X J, et al. Mechanism and application of plant growth-promoting bacteria in heavy metal bioremediation[J]. Environmental Science, 2022,43(9):4911-4922. [43] Li Y H, Liu X F, Li Q Z, et al. PGPR promotes the recovery of submerged macrophytes via indigenous microbiome modulations under combined abiotic stress[J]. Water, 2023,15(3):590. [44] Bünemann E K. Assessment of gross and net mineralization rates of soil organic phosphorus-A review[J]. Soil Biology and Biochemistry, 2015,89:82-98. [45] Cerozi B D, Fitzsimmons K. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution[J]. Bioresource Technology, 2016,219:778-781. [46] Cao Y, Fu D F, Liu T F, et al. Phosphorus solubilizing and releasing bacteria screening from the rhizosphere in a natural wetland[J]. Water, 2018,10(2):195-210. [47] 董立萍.解磷菌修复土壤铅污染效应优化及机理探索[D].西安:西北大学, 2014. Dong L P. Optimization and mechanism exploration of the remediation effect of phosphorus decomposing bacteria on soil lead pollution[D]. Xi'an:Northwest University, 2014. [48] 杨丞磊,罗宇维,陈平,等.石油烃降解菌的初筛及其降解性能研究[J].化学工程师, 2010,24(3):19-23. Yang C L, Luo Y W, Chen P, et al. Isolation of hydrocarbon degrading bacteria and research on their degrading performance[J]. Chemical Engineer, 2010,24(3):19-23. [49] Wenzel W W. Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils[J]. Plant and Soil, 2009,321(1/2):385-408. [50] Zhang L, Lyu T, Zhang Y, et al. Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen[J]. Water Research, 2018,131:228-238. [51] 潘建刚,呼庆,齐鸿雁,等.叶际微生物研究进展[J].生态学报, 2011,31(2):583-592. Pan J G, Hu Q, Qi H Y, et al. Advance in the research of phyllospheric microorganism[J]. Acta Ecologica Sinica, 2011,31(2):583-592. [52] Deshpande R S, Sundaravadivelu D, Techtmann S, et al. Microbial degradation of Cold Lake Blend and Western Canadian select dilbits by freshwater enrichments[J]. Journal of Hazardous Materials, 2018,352:111-120. [53] 骆韵涵,柯志滨,钟超,等.红树林土壤解磷菌的分离鉴定及解磷特性[J].中国环境科学, 2020,40(6):2664-2673. Luo Y H, Ke Z B, Zhong C, et al. Isolation and identification of phosphate-solubilizing bacteria from mangrove and their phosphate-solubilizing characteristics[J]. China Environmental Science, 2020, 40(6):2664-2673. [54] 池景良,郝敏,王志学,等.解磷微生物研究及应用进展[J].微生物学杂志, 2021,41(1):1-7. Chi J L, Hao M, Wang Z X, et al. Advances in research and application of phosphorus-solubilizing microorganism[J]. Journal of Mirobiology, 2021,41(1):1-7. [55] 林启美,王华,赵小蓉,等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报, 2001,28(2):26-30. Lin Q M, Wang H, Zhao X R, et al. Preliminary study on the phosphorus decomposing ability and mechanism of some bacteria and fungi[J]. Microbiology China, 2001,28(2):26-30. [56] Etesami H, Maheshwari K D. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture:Action mechanisms and future prospects[J]. Ecotoxicology and Environmental Safety, 2018,156:225-246. [57] 郑彤,周启星,欧阳少虎.植物-微生物共生系统功能强化及其在降污固碳中的作用[J].科学通报, 2023,68(24):3155-3171. Zheng T, Zhou Q X, Ouyang S H. Enhancing function of plant-microbial symbiosis for pollution mitigation and carbon sequestration[J]. Chinese Science Bulletin, 2023,68(24):3155-3171. [58] 郭静波,陈微,马放,等.环境污染治理中难降解有机污染物的生物共代谢[J].安全与环境学报, 2014,14(6):223-227. Guo J B, Chen W, Ma F, et al. Microbial co-metabolism of the refractory organic pollutants in the environmental pollution control[J]. Journal of Safety and Environment, 2014,14(6):223-227. [59] 王慧,胡金星,秦智慧,等.细菌对有机污染物的趋化性及其对降解的影响[J].浙江大学学报(农业与生命科学版), 2017,43(6):676-684. Wang H, Hu J X, Qin Z H, et al. Bacterial chemotaxis to organic pollutants and its influence on biodegradation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017,43(6):676-684. [60] 邓欢,陆海,张小雨,等.褐煤提质废水生物处理系统启动期菌群结构变化[J].吉林农业大学学报, 2023,45(1):83-93. Deng H, Lu H, Zhang X Y, et al. Dynamic changes of microbial community structure in the start-up period of the biological treatment system for lignite upgrading wastewater[J]. Journal of Jilin Agricultural University, 2023,45(1):83-93. [61] Qian X J, Chen L, Sui Y, et al. Biotechnological potential and applications of microbial consortia[J]. Biotechnology Advances, 2020, 40:107500. |
|
|
|