|
|
Toxic effects of bisphenol AF on cardiovascular and nervous systems in marine medaka larvae |
ZHOU Tian-yang1, CHEN Yue-bi1, GAO Jia-hao1, WANG Zhong-duo1,2, GUO Yu-song1,2, DONG Zhong-dian1,2 |
1. Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes/Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; 2. Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China |
|
|
Abstract To assess the toxic impacts of bisphenol AF (BPAF) on the growth and development of marine medaka (Oryzias melastigma) larvae and whether these effects could recover when environmental restored, the larvae were exposed to BPAF at the concentrations of 7.96 and 82.91μg/L for 7 days, followed by a 7-day recovery in BPAF-free seawater. The survival, growth, heart rate, and swimming behavior, as well as transcription levels of genes related to nervous, cardiovascular, and antioxidant system, were examined. The results showed that exposure to 82.91μg/L BPAF significantly reduced the survival rate; exposure to both of 7.96 and 82.91μg/L BPAF significant inhibited the growth, swimming behavior, and heart rate. After a 7-day recovery, the growth of the larvae recstored, but swimming behavior and heart rate remained suppressed. The results of gene expression analysis showed that, exposure to 7.96μg/L of BPAF significantly downregulated the expression of the neurological gene ache (30%), cardiovascular gene tbx2b (47%), and antioxidant system gene cat (56%), with the inhibitory effects on achee and cat dissipating following recovery; exposure to 82.91μg/L of BPAF significantly reduced the expression of neurological genes syn2a (80%), shha (58%), xdh (59%), gap43 (47%), and elav13 (54%), as well as cardiovascular genes atp2a1 (44%), crhr1 (84%), tbx2b (60%), arnt2 (32%), and tbx6 (68%); following a 7 day recovery, elav13 normalized while gap43 was upregulated, and antioxidant genes cat, sod, cox, and gpx were decreased by 61%, 71%, 51%, and 53% relative to controls. This study provides important data for the assessment of marine ecological risks of BPAF and the establishment of water quality standards.
|
Received: 04 October 2023
|
|
|
|
|
[1] Bhandari R K, Deem S L, Holliday D K, et al. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species[J]. General and Comparative Endocrinology, 2015, 214:195-219. [2] Merrill M A L, Vandenberg L N, Smith M T, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification[J]. Nature Reviews Endocrinology, 2020,16(1):45-57. [3] Song S J, Ruan T, Wang T, et al. Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China[J]. Environmental Science and Technology, 2012,46(24):13136-13143. [4] Song S J, Song M Y, Zhen L Z, et al. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China[J]. Environmental Pollution, 2014,186:14-19. [5] Liao C Y, Liu F, Alomirah H, et al. Bisphenol S in urine from the United States and seven Asian countries:occurrence and human exposures[J]. Environmental Science and Technology, 2012,46(12):6860-6866. [6] Yu X H, Xue J C, Yao H, et al. Occurrence and estrogenic potency of eight bisphenol analogs in sewage sludge from the U.S. EPA targeted national sewage sludge survey[J]. Journal of Hazardous Materials, 2015,299:733-739. [7] Zhao N, Hu H M, Zhao M R, et al. Occurrence of free-form and conjugated Bisphenol analogues in marine organisms[J]. Environmental Science and Technology, 2021,55(8):4914-4922. [8] Xie J H, Zhao N, Zhang Y Y, et al. Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea[J]. Chemosphere, 2021,287:132218. [9] Zhao X, Qiu W H, Zheng Y, et al. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China[J]. Ecotoxicology and Environmental Safety, 2019,180:43-52. [10] Cunha S C, Ferreira R, Marmelo I, et al. Occurrence and seasonal variation of several endocrine disruptor compounds (pesticides, bisphenols, musks and UV-filters) in water and sediments from the estuaries of Tagus and Douro Rivers (NE Atlantic Ocean coast)[J]. Science of the Total Environment, 2022,838:155814. [11] Gil-Solsona R, Castano-Ortiz J M, Munoz-Mas R, et al. A holistic assessment of the sources, prevalence, and distribution of bisphenol A and analogues in water, sediments, biota and plastic litter of the Ebro Delta (Spain)[J]. Environmental Pollution, 2022,314:120310. [12] Karolina C K, Barbara K, Dominik S, et al. Bisphenol A and its substitutes in the aquatic environment:Occurrence and toxicity assessment[J]. Chemosphere, 2023,315:137763. [13] 郭婧颖,刘建超,李帅衡等.双酚AF对大型溞生殖、生长等生态行为的影响[J].中国环境科学, 2019,39(10):4394-4400. Guo J Y. Liu J C, Li S H, et al. Influences of bisphenol AF on the reproduction and growth of Daphnia magna[J]. China Environmental Science, 2019,39(10):4394-4400. [14] 陈亚文.六氟双酚A暴露对成鱼期斑马鱼的毒性效应[D].海口:海南大学, 2016. Chen Y W. Toxic effects of bisphenol AF exposure adult zebrafish (Danio rerio)[D]. Haikou:Hainan University, 2016. [15] 唐天乐.六氟双酚A对斑马鱼(Danio rerio)甲状腺轴及认知能力的干扰效应研究[D].海口:海南大学, 2016. Tang T L. Disruption of the thyroidal axis and cognitive ability in zebrafish (Danio rerio) exposed to BPAF[D]. Haikou:Hainan University, 2016. [16] 杨洋.双酚AF暴露对胚胎/幼鱼期斑马鱼的毒性效应及甲状腺内分泌系统的干扰效应[D].海口:海南大学, 2016. Yang Y. Toxic effects of bisphenol AF exposure on embryonic/juvenile zebrafish and interfering effects of thyroid endocrine system[D]. Haikou:Hainan University, 2016. [17] 朱小乔.六氟双酚A暴露对成鱼期斑马鱼神经毒性的效应影响[D].海口:海南大学, 2017. Zhu X Q. Neurotoxicity effect of bisphenol AF exposure on adult zebrafish[D]. Haikou:Hainan University, 2017. [18] Hong H Z, Shen R, Liu W X, et al. Developmental toxicity of three hexabromocyclododecane diastereoisomers in embryos of the marine medaka Oryzias melastigma[J]. Marine Pollution Bulletin, 2015,101(1):110-118. [19] Du M M, Zhang D D, Yan C Z, et al. Developmental toxicity evaluation of three hexabromocyclododecane diastereoisomers on zebrafish embryos[J]. Aquatic Toxicology, 2012,112/113:1-10. [20] 陈漪,冉皓宇,王晓杰,等.海水模式种青鳉鱼(Oryzias melastigma)的胚胎发育观察[J].海洋与湖沼, 2016,47(1):71-82. Chen Y, Ran H Y, Wang X J, et al. Developmental stage of a marine model fish-medaka Oryzias melastigma[J]. Oceanologia Et Limnologia Sinica, 2016,47(1):71-82. [21] 王友红,刘洪军,于道德,等.海水青鳉胚胎发育的观察[J].海洋科学, 2017,(6):18-25. Wang Y H, Liu H J, Yu D D, et al. Observation of embryonic development of marine medaka Oryzias melastigma[J]. Marine Sciences, 2017,(6):18-25. [22] Tian L, Chen J P, Chen X P, et al. Early developmental toxicity of saxitoxin on medaka (Oryzias melastigma) embryos[J]. Toxicon, 2014,77:16-25. [23] 李建军,黄韧.不同发育阶段诸氏鲻虾虎鱼对水污染物的敏感性比较[J].实验动物与比较医学, 2013,33(5):4. Li J J, Huang R. Comparison of the sensitivity of Mugilogobius chulae at different developmental stages to aquatic pollutants[J]. Laboratory Animal and Comparative Medicine, 2013,33(5):4. [24] 庄平,王瑞芳,石小涛,等.氟对西伯利亚鲟仔鱼的急性毒性及安全浓度评价[J].生态毒理学报, 2009,4(3):440-445. Zhuang P, Wang R F, Shi X T, et al. Acute toxicity and safety assessment of fluoride to larval siberian sturgeon Acipenser baeri[J]. Asian Journal of Ecotoxicology, 2009,4(3):440-445. [25] Hamm J T, Wilson B W, Hinton D E. Increasing uptake and bioactivation with development positively modulate diazinon toxicity in early life stage medaka (Oryzias latipes)[J]. Toxicological Sciences, 2001,61:304-313. [26] 端正花,朱琳,宫知远,等.己烯雌酚在斑马鱼胚胎中的生物蓄积及毒性机制研究[J].环境科学, 2009,37(2):522-526. Duan Z H, Zhu L, Gong Z Y, et al. Bioaccumulation and toxicity test of diethylstilbestrol to zebrafish (Danio rerio) embryo[J]. Environmental Science, 2009,37(2):522-526. [27] 李建军,黄韧.不同发育阶段诸氏鲻虾虎鱼对水污染物的敏感性比较[J].实验动物与比较医学, 2013,33(5):4. Li J J, Huang R. Comparison of the sensitivity of Mugilogobius chulae at different developmental stages to aquatic pollutants[J]. Laboratory Animal and Comparative Medicine, 2013,33(5):4. [28] 潘睿,胡晶莹,户宜,等.胚胎期双酚A暴露对斑马鱼发育及神经行为的影响[J].上海交通大学学报(医学版), 2019,39(5):458-462. Pan R, Hu J Y, Hu Y, et al. Effects of bisphenol A exposure during embryonic phase on development and neurobehavior of zebrafish[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2019, 39(5):458-462. [29] 唐天乐,杨洋,陈亚文,等.双酚AF胁迫对斑马鱼早期发育相关基因的影响[J].生物技术, 2017,27(1):71. Tang T L, Yang Y, Chen Y W, et al. Effects of BPAF on the expression of early development genes of zebrafish (Danio rerio) embryo and larvae[J]. Biotechnology, 2017,27(1):71. [30] Rao C Y, Cao X L, Li L L, et al. Bisphenol AF induces multiple behavioral and biochemical changes in zebrafish (Danio rerio) at different life stages[J]. Aquatic Toxicology, 2022,253:106345. [31] Huang Z Y, Gao J H, Chen Y B, et al. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma)[J]. Environmental Toxicology, 2023,38(6):1445-1454. [32] Li X Y, Liu Y, Chen Y B, et al. Long-term exposure to bisphenol A and its analogues alters the behavior of marine medaka (Oryzias melastigma) and causes hepatic injury[J]. Science of the Total Environment, 2022,841:156590. [33] Dong Z D, Chen Y B, Li X Y, et al. Norethindrone alters growth, sex differentiation and gene expression in marine medaka (Oryzias melastigma)[J]. Environmental Toxicology, 2022,37(5):1211-1221. [34] Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods, 2001,25(4):402-408. [35] 费雨萌.新型双酚类化合物在斑马鱼体内的毒性机理研究[D].常州:常州大学, 2022. Fei Y M. Study on the toxicity mechanism of bisphenol analogues in zebrafish[D]. Changzhou:Changzhou University, 2022. [36] 蔡苗.典型双酚类化合物的污染分布、富集转化规律及其健康风险评价[D].深圳:深圳大学, 2019. Cai M. Distribution, accumulation, transformation and risk assessment of bisphenol compounds[D]. Shenzhen:Shenzhen University, 2019. [37] 黎丽莎.二烷基次膦酸盐及双酚AF对水生生物的毒性效应[D].武汉:华中农业大学, 2015. Li L S. Toxic effect of dialkyl phosphinate and bisphenol AF on aquatic organisms[D]. Wuhan:Huazhong Agricultural University, 2015. [38] 杨倩,任文娟,刘济宁,等.双酚P对斑马鱼的生长和发育毒性[J].生态毒理学报, 2022,17(5):383-392. Yang Q, Ren W J, Liu J N, et al. Developmental toxicity of bisphenol P on zebrafish[J]. Asian Journal of Ecotoxicology, 2022,17(5):383-392. [39] 寇冠华.雌激素类似物对斑马鱼生命早期的发育毒性及内分泌轴的影响[D].汕头:汕头大学, 2021. Kou G H. Estrogen-like compounds developmental toxicity and influence on endocrine axis in early life of zebrafish[D]. Shantou:Shantou University, 2021. [40] Baumann L, Knörr S, Keiter S, et al. Reversibility of endocrine disruption in zebrafish (Danio rerio) after discontinued exposure to the estrogen 17α-ethinylestradiol[J]. Toxicology and Applied Pharmacology, 2014,278:230-237. [41] 吴敏.地西泮药物污染对斑马鱼神经行为毒性及机制研究[D].镇江:江苏大学, 2022. Wu M. Study on the neurobehavioral toxicity and mechanism of diazepam drug contamination in zebrafish[D]. Zhenjiang:Jiangsu University, 2022. [42] 彭蕴茹,韦英杰,丁永芳,等.基于斑马鱼模型的药物毒性研究进展与中药毒性研究新策略[J].中草药, 2017,48(1):17-30. Peng Y R, Wei Y J, Ding Y F, et al. Development of drug toxicity and novel strategy for toxicity of Chinese materia medica based on zebrafish model[J]. Chinese Traditional and Herbal Drugs, 2017, 48(1):17-30. [43] Dell A I, Bender J A, Branson K, et al. Automated image-based tracking and its application in ecology[J]. Trends in Ecology&Evolution, 2014,29(7):417-428. [44] 顾杰,王宏烨,廖振东,等.双酚AP和双酚AF对斑马鱼的早期神经发育毒性作用研究[J].环境与职业医学, 2019,369(8):11-16. Gu J, Wang H Y, Liao Z D, et al. Neurodevelopmental toxicities of bisphenol AP and bisphenol AF in early life of zebrafish[J]. Journal of Environmental and Occupational Medicine, 2019,369(8):11-16. [45] 杨丽华,史奇朋,周炳升,等.双酚A对斑马鱼幼鱼神经递质和神经行为的影响[J].生态毒理学报, 2017,12(3):162-169. Yang L H, Shi Q P, Zhou B S, et al. The Effects of BPA on neurobehavior and neurotransmitters of larval zebrafish (Danio rerio)[J]. Asian Journal of Ecotoxicology, 2017,12(3):162-169. [46] 王宏烨,曹诚,刘益海,等.双酚AP对斑马鱼心脏发育毒性作用研究[J].环境科学与技术, 2019,42(8):1-6. Wang H Y, Cao C, Liu Y H, et al. Effect of bisphenol AP on the developing heart of zebrafish[J]. Environmental Science&Technology, 2019,42(8):1-6. [47] 李世凯,张健龙,江敏,等.伊维菌素对斑马鱼(Danio rerio)生理生化特性的影响[J].安全与环境学报, 2014,14(1):300-305. Li S K, Zhang J L, Jiang M, et al. Effects of ivermectin on the physiological and biochemical characteristic features of Danio rerio[J]. Journal of Safety and Environment, 2014,14(1):300-305. [48] 叶东平,陈斌,何正波,等.乙酰胆碱酯酶的分离纯化及生物学研究进展[J].安徽农业科学, 2011,39(7):3811-3814. Ye D P, Chen B, He Z B, et al. Research progress of seperation, purification and biology of acetylcholinesterase[J]. Journal of Anhui Agricultural Sciences, 2011,39(7):3811-3814. [49] 岳鑫,杨爱江,徐鹏,等.锑胁迫对斑马鱼酶活性的影响研究[J].生物技术通报, 2019,35(6):107-113. Yue X, Yang A J, Xu P, et al. Effect of antimony on the enzyme activity of Danio rerio[J]. Biotechnology Bulletin, 2019,35(6):107-113. [50] Kao H T, Porton B, Czernik A J, et al. A third member of the synapsin gene family[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(8):4667-4672. [51] Müller F, Chang B, AlbertL S, et al. Intronic enhancers control expression of zebrafish sonic hedgehog in floor plate and notochord[J]. Development, 1999,126(10):2103-2116. [52] Chen X, Wu H J, Feng J, et al. Transcriptome profiling unveils GAP43regulates ABC transporters and EIF2signaling in colorectal cancer cells[J]. BMC Cancer, 2021,21(1):24. [53] Niu R Z, Xiong L L, Zhou H L, et al. Scutellarin ameliorates neonatal hypoxic-ischemic encephalopathy associated with GAP43-dependent signaling pathway[J]. Chinese Medicine, 2021,16(1):105. [54] Mizuo K, Narita M, Miyagawa K, et al. Prenatal and neonatal exposure to bisphenol-A affects the morphineinduced rewarding effect and hyperlocomotion in mice[J]. Neuroscience Letters, 2004,356(2):95-98. [55] Muller C, Bauer N M, Schafer I, et al. Making myelin basic protein from mRNA transport to localized translation[J]. Frontiers in Cellular Neuroscience, 2013,7:169. [56] Christoffels V M, Hoogaars W M, Tessari A, et al. T-box transcription factor Tbx2represses differentiation and formation of the cardiac chambers[J]. Developmental Dynamics, 2004,229(4):763-770. [57] Kondoh H, Takemoto T. Axial stem cells deriving both posterior neural and mesodermal tissues during gastrulation[J]. Current Opinion in Genetics&Development, 2012,22(4):374-380. [58] Antkiewicz D S, Peterson R E, Heideman W. Blocking expression of AHR2and ARNT1in zebrafish larvae protects against cardiac toxicity of 2,3,7,8-tetrachlorodibenzop dioxin[J]. Toxicology Sciences, 2006,94(1):175-182. [59] Cherian A V, Fukuda R, Augustine S M, et al. N-cadherin relocalization during cardiac trabeculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016,113(27):7569-7574. [60] Piven O O, Kostetskii I E, Macewicz L L, et al. Requirement for N-cadherin-catenin complex in heart development[J]. Experimental Biology Medicine, 2011,236(7):816-822. [61] 蔡博生.盐度对金钱鱼血清生化指标和免疫相关基因表达的影响[D].湛江:广东海洋大学, 2022. Cai B S. Effects of salinity on the serum biochemical indexes and expression of immune-related genes in spotted scat[D]. Zhanjiang:Guangdong Ocean University, 2022. [62] Ferrer M D, Busquets-Cortés C, Capó X, et al. Cyclooxygenase-2inhibitors as a therapeutic target in inflammatory diseases[J]. Current Medicinal Chemistry, 2019,26(18):3225-3241. [63] Dubois R N, Abramson S B, Crofford L, et al. Cyclooxygenase in biology and disease[J]. Faseb Journal, 1998,12(12):1063-1073. |
|
|
|