|
|
Power system optimization with energy storage and carbon neutrality scenario analysis of China |
FAN Shi-jia1, XU Guang-qing2, ZHAO Qing2, WU Jing-yi2 |
1. Gf Securities Co., Ltd., Guangzhou 510627, China; 2. School of Ecology&Environment, Renmin University of China, Beijing 100872, China |
|
|
Abstract To achieve carbon neutrality, a new type of power system with new energy as the main body needs to be built on the supply side, and the electrification rate needs to be improved on the demand side. Simultaneously, the integration of new energy sources necessitated the construction of energy storage facilities. In this study, the NEMO-China energy system model was built based on the LEAP-NEMO framework, and the cost of the power system was optimized. The baseline scenario was set with high carbon sink capacity expectations and the retention of coal-fired power as a backup, then the demand-oriented, supply-oriented, and Comprehensive scenarios were set according to different development pathways. China's terminal energy demand, power system operations, cost, and CO2 emissions were simulated from 2020 to 2060. Results indicated that carbon peaking was achieved as scheduled. Achieving carbon neutrality in the Baseline scenario required support from CCUS and negative carbon technologies. The demand-oriented scenario incurred high costs and did not achieve cost-effectiveness. In the supply-oriented scenario, achieving carbon neutrality was challenging with low expectations for carbon sink capacity, necessitating simultaneous efforts in deep decarbonization on the supply side and deep transformation on the demand side. The comprehensive scenario achieved carbon neutrality with the lowest cumulative costs and carbon emissions, making it the ideal pathway for future carbon neutrality. Encouraging industrial transformation and increasing electrification rates on the demand side, while promoting the penetration of renewable energy and the development of energy storage technologies on the supply side, are necessary for the future.
|
Received: 20 October 2023
|
|
|
|
|
[1] Kumar K, Jaipal B. The role of energy storage with renewable electricity generation[EB/OL]. http://dx.doi.org/10.5772/intechopen.96114.2022-07-12/2023-06-15. [2] Yuan K, Zhang T, Xie X, et al. Exploration of low-cost green transition opportunities for China's power system under dual carbon goals[J]. Journal of Cleaner Production, 2023:137590. [3] 张希良,黄晓丹,张达,等.碳中和目标下的能源经济转型路径与政策研究[J].管理世界, 2022,38(1):35-66. Zhang Xiliang, Huang Xiaodan, Zhang Da, et al. Research on the pathway and policies for China's energy and economy transformation toward carbon neutrality[J]. Management World, 2022,38(1):35-66. [4] 项目综合报告编写组.《中国长期低碳发展战略与转型路径研究》综合报告[J].中国人口·资源与环境, 2020,30(11):1-25. Project Comprehensive Report Writing Group. Comprehensive report of "Study on China's Long-term Low-carbon Development Strategy and Transformation Path"[J]. China Population Resources and Environment, 2020,30(11):1-25. [5] 吴郧,余碧莹,邹颖,等.碳中和愿景下电力部门低碳转型路径研究[J].中国环境管理, 2021,13(3):48-55. Wu Yun, Yu Biying, Zou Ying, et al. The path of low-carbon transformation in China's power sector under the vision of carbon neutrality[J]. Chinese Journal of Environmental Management, 2021, 13(3):48-55. [6] 黎博,陈民铀,钟海旺,等.高比例可再生能源新型电力系统长期规划综述[J].中国电机工程学报, 2023,43(2):555-581. Li Bo, Chen Minyou, Zhong Haiwang, et al. A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023,43(2):555-581. [7] Deng X, Lv T. Power system planning with increasing variable renewable energy:A review of optimization models[J]. Journal of Cleaner Production, 2020,246:118962. [8] He G, Lin J, Sifuentes F, et al. Rapid cost decrease of renewables and storage accelerates the decarbonization of China's power system[J]. Nature communications, 2020,11(1):2486. [9] 舒印彪,张丽英,张运洲,等.我国电力碳达峰、碳中和路径研究[J].中国工程科学, 2021,23(6):1-14. Shu Yinbiao, Zhang Liying, Zhang Yunzhou, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021,23(6):1-14. [10] 魏泓屹,卓振宇,张宁,等.中国电力系统碳达峰·碳中和转型路径优化与影响因素分析[J].电力系统自动化, 2022,46(19):1-12. Wei Hongyi, Zhuo Zhenyu, Zhang Ning, et al. Transition path optimization and influencing factor analysis of carbon emission peak and carbon neutrality for power system of China[J]. Automation of Electric Power Systems, 2022,46(19):1-12. [11] Heaps C G. LEAP:The Low Emissions Analysis Platform.[Software version:2020.1.104] [CP/OL]. https://leap.sei.org. [12] Le Truet G, Lefever J, Lallana F, et al. The multi-level economic impacts of deep decarbonization strategies for the energy system[J]. Energy Policy, 2021,156:112423. [13] Hu G, Ma X, Ji J. Scenarios and policies for sustainable urban energy development based on LEAP model-A case study of a postindustrial city:Shenzhen China[J]. Applied Energy, 2019,238:876-886. [14] Ren H, Wu Q, He W, et al. Research on Regional low-carbon development path based on LEAP model:Taking the Lin-gang Special Area as an example[J]. Energy Reports, 2022,8:327-335. [15] 洪竞科,李沅潮,蔡伟光.多情景视角下的中国碳达峰路径模拟——基于RICE-LEAP模型[J].资源科学, 2021,43(4):639-651. Hong Jingke, Li Yuanchao, Cai Weiguang. Simulating China's carbon emission peak path under different scenarios based on RICE-LEAP model[J]. Resources Science, 2021,43(4):639-651. [16] Veysey J, Heaps C, Kemp-Benedictk E, et al. NEMO:The Next Energy Modeling system for Optimization[EB/OL]. https://leap.sei.org/default.asp?action=NEMO. 2022-08-23/2023-06-15. [17] Wambui V, Njoka F, Muguthu J, et al. Scenario analysis of electricity pathways in Kenya using Low Emissions Analysis Platform and the Next Energy Modeling system for optimization[J]. Renewable and Sustainable Energy Reviews, 2022,168:112871. [18] Elberry A M, Thakur J, Veysey J. Seasonal hydrogen storage for sustainable renewable energy integration in the electricity sector:A case study of Finland[J]. Journal of Energy Storage, 2021,44:103474. [19] Handayani K, Anugrah P, Goembira F, et al. Moving beyond the NDCs:ASEAN pathways to a net-zero emissions power sector in 2050[J]. Applied Energy, 2022,311:118580. [20] Ayuketah Y, Gyamfi S, Diawuo F A, et al. Power generation expansion pathways:A policy analysis of the Cameroon power system[J]. Energy Strategy Reviews, 2022,44:101004. [21] Zhou W, Zhuang G, Liu L. Comprehensive assessment of energy supply-side and demand-side coordination on pathways to carbon neutrality of the Yangtze River Delta in China[J]. Journal of Cleaner Production, 2023,404:136904. [22] 国家统计局能源统计司.中国能源统计年鉴2021[M].北京:中国统计出版社, 2021. Energy Statistics Department of the National Bureau of Statistics. China energy statistical yearbook 2021[M]. Beijing:China Statistics Press, 2021. [23] Chen X, Zhou W. Support carbon neutrality target-Which flexible power source is the best option for China?[J]. Energy, 2023,285:128682. [24] Hirsh H S, Li Y, Tan D H, et al. Sodium-ion batteries paving the way for grid energy storage[J]. Advanced Energy Materials, 2020,10(32):2001274. [25] 中国电力企业联合会.中国电力统计年鉴2021[M].北京:中国统计出版社, 2021. China Electric Power Enterprise Federation. China electric power statistical yearbook 2021[M]. Beijing:China Statistics Press, 2021. [26] 中关村储能产业技术联盟.储能产业研究白皮书2022[R].北京:中关村储能产业技术联盟, 2022. Zhongguancun Energy Storage Industry Technology Alliance. White paper on energy storage industry research 2022[R]. Beijing:Zhongguancun Energy Storage Industry Technology Alliance, 2022. [27] Cui R Y, Hultman N, Cui D, et al. A plant-by-plant strategy for high-ambition coal power phaseout in China[J]. Nature Communications, 2021,12(1):1468. [28] 卓振宇,张宁,谢小荣,等.高比例可再生能源电力系统关键技术及发展挑战[J].电力系统自动化, 2021,45(9):171-191. Zhuo Zhenyu, Zhang Ning, Xie Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9):171-191. [29] 陈立斌.可再生能源与核电减排二氧化碳经济性分析[J].中外能源, 2016,21(11):30-34. Chen Libin. Economic analysis of carbon dioxide emission reduction by using renewable and nuclear energy sources[J]. Sino-Global Energy, 2016,21(11):30-34. [30] 孙旭东,张博,彭苏萍.我国洁净煤技术2035发展趋势与战略对策研究[J].中国工程科学, 2020,22(3):132-140. Sun Xudong, Zhang Bo, Peng Suping. Development trend and strategic countermeasures of clean coal technology in China toward 2035[J]. Strategic Study of CAE, 2020,22(3):132-140. [31] 刘志强,赵毅,潘荔.中外火电节能减排效率分析与比较[J].热力发电, 2021,50(3):9-18. Liu Zhiqiang, Zhao Yi, PAN Li. Analysis and comparison of energy saving efficiency and emission reduction efficiency of thermal power between China and foreign countries[J]. Thermal Power Generation, 2021,50(3):9-18. [32] 凌光芬.各类储能技术度电成本分析[J].中国工业和信息化, 2022,(12):29-34. Ling Guangfen. Analysis of electricity cost for various energy storage technologies[J]. China Industry&Information Technology, 2022,(12):29-34. [33] 刘文霞,何向刚,吴方权,等.新能源发电出力特性指标及其数据化应用[J].电网与清洁能源, 2020,36(9):85-92. Liu Wenxia, He Xianggang, Wu Fangquan, et al. New energy generation output characteristic index and its data application[J]. Power System and Clean Energy, 2020,36(9):85-92. [34] 吕清泉,张珍珍,马彦宏,等.区域光伏发电出力特性分析研究[J].发电技术, 2022,43(3):413-420. Lv Qingquan, Zhang Zhenzhen, Ma Hongyan, et al. Analysis and research on output characteristics of regional photovoltaic power generation[J]. Power Generation Technology, 2022,43(3):413-420. [35] 赵岳恒,王志敏,钱纹,等.云南省水电集群出力特性[J].水电能源科学, 2018,36(6):150-153. Zhao Yueheng, Wang Zhimin, Qian Wen, et al. Output characteristics of hydropower cluster in Yunnan province[J]. Water Resources and Power, 2018,36(6):150-153. [36] 姜文玲,王勃,汪宁渤,等.多时空尺度下大型风电基地出力特性研究[J].电网技术, 2017,41(2):493-499. Jiang Wenling, Wang Bo, Wang Ningbo, et al. Research on power output characteristics of large-scale wind power base in multiple temporal and spatial scales[J]. Power System Technology, 2017,41(2):493-499. [37] 唐雅洁,阎洁,李玉浩,等.基于深度嵌入聚类的风光水典型联合出力场景提取[J].浙江电力, 2023,42(4):36-44. Tang Yajie, Yan Jie, Li Yuhao, et al. Extraction of typical combined output scenarios of wind-solar-hydropower generation based on deep embedding clustering[J]. Zhejiang Electric Power, 2023,42(4):36-44. [38] 周自强,赵淳,范鹏.电力负荷数据典型特征提取[J].电工技术, 2020,(21):69-71. Zhou Ziqiang, Zhao Chun, Fan Peng. Typical Feature Extraction of Power Load Data[J]. Electric Engineering, 2020,(21):69-71. [39] 生态环境部.省级二氧化碳排放达峰行动方案编制指南[S]. 2021. Ministry of Ecology and Environment. Guidelines for the preparation of provincial action plans for peaking carbon dioxide emissions[S]. 2021. [40] Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831):720-723. [41] Wang P, Shi B, Li N, et al. CCUS development in China and forecast its contribution to emission reduction[J]. Scientific Reports, 2023, 13(1):17811. [42] Duan H, Zhou S, Jiang K, et al. Assessing China's efforts to pursue the 1.5C warming limit[J]. Science, 2021,372(6540):378-385. [43] 国网能源研究院有限公司.中国能源电力发展展望2021[M].北京:中国电力出版社, 2021. State Grid Energy Research Institute Co., Ltd. Outlook for China's Energy and Electricity Development in 2021[M]. Beijing:China Electric Power Press, 2021. [44] 全球能源互联网发展合作组织.中国2030年能源电力发展规划研究及2060年展望[R]. 2021. Global Energy Internet Development Cooperation Organization. Research on China's 2030 energy and electricity development Plan and Outlook for 2060[R]. 2021. [45] 电力规划设计总院.火电工程限额设计参考造价指标(2021年水平)[M].北京:中国电力出版社, 2022. Electric Power Planning and Design Institute. Reference cost indicators for quota design of thermal power engineering (2021level)[M]. Beijing:China Electric Power Press, 2022. [46] 电力规划设计总院,水电水利规划设计总院.中国电力技术经济发展研究报告2021[M].北京:人民日报出版社, 2021. Electric Power Planning and Design Institute, Hydropower and Water Resources Planning and Design Institute. Research report on the development of China's electric power technology and economy in 2021[M]. Beijing:People's Daily Publishing House, 2021. [47] 傅旭,李富春,杨欣,等.基于全寿命周期成本的储能成本分析[J].分布式能源, 2020,5(3):34-38. Fu Xu, Li Fuchun, Yang Xin, et al. Cost analysis of energy storage based on life cycle cost[J]. Distributed Energy, 2020,5(3):34-38. [48] UN. World Population Prospects 2022[EB/OL]. https://population.un.org/wpp/.2023-06-15/2023-06-15. [49] UN. World Urbanization Prospects 2018[EB/OL]. https://population. un.org/wup/. 2023-06-15/2023-06-15. [50] 汤芳,张宁,代红才.两个50%:能源革命背景下的深度解析[J].能源, 2020,(Z1):23-26. Tang Fang, Zhang Ning, Dai Hongcai. Two 50%:Deep Analysis under the Background of Energy Revolution[J]. Energy, 2020,(Z1):23-26. [51] 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL]. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm. Opinions of the Central Committee of the Communist Party of China and the State Council on fully implementing the new development concept and doing a good job in carbon peak and carbon neutrality[EB/OL]. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm. 2021-10-24/2023-06-15. [52] 张浩楠,申融容,张兴平,等.中国碳中和目标内涵与实现路径综述[J].气候变化研究进展, 2022,18(2):240-252. Zhang Hao-Nan, Shen Rong-Rong, Zhang Xing-Ping, et al. Implications and pathways of China's carbon neutrality:a review[J]. Climate Change Research, 2022,18(2):240-252. |
|
|
|