|
|
Performance and mechanism of mercury removal from flue gas by copper-enriched Acorus calamus biochar |
LI Hong-hu, AN Miao, PENG Xi-yan, ZHANG Jing-dong, SUN Yang, SONG Yong-wei |
School of Information Engineering Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China |
|
|
Abstract The biochar containing copper sites (Cu-BC) was prepared by one-step pyrolysis of Cu-enriched Acorus calamus biomass and then utilized for elemental mercury (Hg0) removal from the flue gas. The results showed that Cu-BC (Cu-BC500) pyrolyzed at 500℃ exhibited excellent Hg0 removal performance (about 99%) at reaction temperature of 100℃. The characterization results including specific surface area analysis (BET), X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectrum (FT-IR) indicated that Cu-BC500 had a relatively high specific surface area, abundant oxygen-containing functional groups and highly dispersed Cu species. XPS and Hg-TPD analyses showed that the mercury adsorbed by Cu-BC500 existed in the forms of weakly bound mercury Cu-O-Hg or copper amalgam at the surface active sites of the biochar samples. Finally, through the life-cycle cost analysis, the cost of Cu-BC500is calculated to be 3.50yuan/kg. Compared with other materials, the preparation of Cu-BC500 is simple and low-costing. The results will provide new ideas for promoting the resource reuse of water restoration plants and mercury emission reduction in coal-fired power plants.
|
Received: 25 November 2023
|
|
|
|
|
[1] 李鸿鹄,彭喜燕,安淼,等.硫酸活化硫酸亚铁絮凝污泥对冶炼烟气中Hg0的脱除研究[J]. 中国环境科学, 2023,43(11):5709-5718. Li H H, Peng X Y, An M, et al. Removal of Hg0 from smelting flue gas by FeSO4-flocculated sludge activated with sulfuric acid [J]. China Environmental Science, 2023,43(11):5709-5718. [2] 王树民,白孝轩,宋畅,等.燃煤电厂大气汞及其他痕量元素排放标准研究[J]. 中国环境科学, 2021,41(4):1949-1958. Wang S M, Bai X X, Song C, et al. Study of atmospheric trace elements emission standards for coal-fired power plants in China [J]. China Environmental Science, 2021,41(4):1949-1958. [3] Pavlish J H, Sondreal E A, Mann M D, et al. Status review of mercury control options for coal-fired power plants [J]. Fuel Processing Technology, 2003,82:89−165. [4] Wilcox J, Rupp E, Ying S C, et al. Mercury adsorption and oxidation in coal combustion and gasification processes [J]. International Journal of Coal Geology, 2012,90−91,4. [5] Scala F, Clack H L. Mercury emissions from coal combustion: Modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator [J]. Journal of Hazardous Materials, 2008, 152(2):616-623. [6] Liu D, Li C,Wu J, et al. Novel carbon-based sorbents for elemental mercury removal from gas streams: A review [J]. Chemical Engineering Journal, 2019,391. [7] 吕维阳,刘盛余,能子礼超,等.载硫活性炭脱除天然气中单质汞的研究[J]. 中国环境科学, 2016,36(2):382-389. Lv W Y, Liu S Y, Neng Z L C, et al. Remove elemental mercury by sulfur-impregnated activated carbon in natural gas [J]. China Environmental Science, 2016,36(2):382-389. [8] 吴林虎,吴京懋,王卉.烟气中脱汞吸附剂热再生性能的研究[J]. 发电设备, 2022,36(6):397-401. Wu L H, Wu J M, Wang H, et al. Research on the performance of mercury removal adsorbents in flue gas by thermal regeneration [J]. Generating Equipment, 2022,36(6):397-401. [9] Yang J, Zhao Y, Zhang J, et al. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation [J]. Fuel, 2016,164:419-428. [10] Yuan Y, Cao W, Weng W. CuCl2 immobilized on amino-functionalized MCM-41 and MCM-48 and their catalytic performance toward the vapor-phase oxy-carbonylation of methanol to dimethylcarbonate [J]. Journal of Catalysis, 2004,228(2):311-320. [11] 周普阳,张新民,张安超,等.Ag-AgIO3改性BiOI光催化剂湿法脱除气态单质汞[J]. 中国环境科学, 2020,40(11):4703-4711. Zhou P Y, Zhang X M, Zhang A C, et al. Wet process of gaseous Hg0 removal by Ag-AgIO3 modified BiOI photocatalyst [J]. China Environmental Science, 2020,40(11):4703-4711. [12] 邢微波,路好,张安超,等.Ag/AgCl可见光催化剂湿法脱除烟气中单质汞[J]. 中国环境科学, 2017,37(2):503-510. Xing W B, Lu H, Zhang A C, et al. Wet process of elemental mercuryremoval from flue gas using Ag/AgCl photocatalyst under visible light [J]. China Environmental Science, 2017,37(2):503-510. [13] Hsu C J, Zhao Y Z, Chung A, et al. Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption [J]. Science of The Total Environment, 2023,855:158870. [14] Li H H, Zhang J D, Cao Y X, et al. Role of acid gases in Hg0 removal from flue gas over a novel cobalt-containing biochar prepared from harvested cobalt-enriched phytoremediation plant [J]. Fuel Processing Technology, 2020,207:106478. [15] Shao Y, Fan J, Li J, et al. Removal of elemental mercury from coal combustion flue gas using recyclable Dy modified Mn-Fe mixed oxide nanoparticles [J]. Journal of Environmental Chemical Engineering, 2022,10(5):108493. [16] 刘东京,张禛,吴江.载铜氮化碳纳米片对单质汞的吸附脱除特性[J]. 中国环境科学, 2019,39(5):1862-1868. Liu D J, Zhang Z, Wu J. Adsorption removal of elemental mercury on Cu-loaded carbon nitride nanosheet [J]. China Environmental Science, 2019,39(5):1862-1868. [17] Li H H, Wang S, Wang X, et al. Activity of CuCl2-modified cobalt catalyst supported on Ti-Ce composite for simultaneous catalytic oxidation of Hg0 and NO in a simulated pre-sco process [J]. Chemical Engineering Journal, 2017,316:1103-1113. [18] Mohamed R M, Ismail A A. Photocatalytic reduction and removal of mercury ions over mesoporous CuO/ZnO S-scheme heterojunction photocatalyst [J]. Ceramics International, 2021,47(7):9659-9667. [19] 邱磊,郭磊,韩金池,等.改性镍铝催化剂氧化零价汞及抗氨干扰机理[J]. 中国环境科学, 2022,42(1):11-19. Qiu L, Guo L, Han J C, et al. Hg0oxidation of modified Ni-Al catalysts and its anti-ammonia interference mechanism [J]. China Environmental Science, 2022,42(1):11-19. [20] Wang H, Chen H, Hou X, et al. MnO decorated biomass derived carbon based on hyperaccumulative characteristics as advanced electrode materials for high-performance supercapacitors [J]. Diamond and Related Materials, 2023,136:109888. [21] 吴响,段钰锋,姚婷,等.Ce-Mn/TiO2吸附剂的脱汞性能及抗SO2特性[J]. 中国环境科学, 2019,39(6):2336-2343. Wu X, Duan Y F, Yao T, et al. Mercury removal performance and SO2 resistance of Ce-Mn/TiO2 sorbent [J]. China Environmental Science, 2019,39(6):2336-2343. [22] 文先彬,张学洪,刘杰.焚烧法和热解法处置Cr超富集植物李氏禾收获物的比较研究[J]. 工业安全与环保, 2018,44(3):73-77. Wen X B, Zhang X H, Liu J. A comparative study on the disposal of harvested products of Cr hyper-accumulator leersia hexandra swartz by incineration and pyrolysis [J]. Industrial Safety and Environmental Protection, 2018,44(3):73-77. [23] 王胜晓.重金属污染土壤修复植物的厌氧发酵处置与再利用[D]. 南京:南京农业大学, 2023. Wang S X. The anaerobic digestion character of heavy metal contaminated plants and application of it’s biogas residues [D]. Nanjing: Agricultural University of Nanjing, 2023. [24] 王敏捷,盛光遥,王锐.土壤重金属污染修复植物处置技术进展[J]. 农业资源与环境学报, 2021,38(2):151-159. Wang M J, Sheng G Y, Wang R. Progress in disposal technologies for plants polluted with heavy metals after phytoextraction [J]. The Journal of Agricultural Resources and The Environment, 2021,38(2): 151-159. [25] Zhou F, Diao Y. Magnetic copper-ferrosilicon composites as regenerable sorbents for Hg0 removal [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020,590:124447. [26] Zhao B,Yi H H, Tang X L, et al. Copper modified activated coke for mercury removal from coal-fired flue gas [J]. Chemical Engineering Journal, 2016,286:585-593. [27] 陈广琳,陈友媛,孙萍,等.滨海区黄花鸢尾的耐盐碱性及氮磷去除效果[J]. 中国环境科学, 2015,35(11):3422-3430. Chen G L, Chen Y Y, Sun P, et al. The Iris Pseudoacorus’ tolerant ability and removal efficiency for nitrogen and phosphorus in saline-alkaline water of coastal region [J]. China Environmental Science, 2015,35(11):3422-3430. [28] Wang Y, Li H H, He Z, et al. Removal of elemental mercury from flue gas using cobalt-containing biomaterial carbon prepared from contaminated Iris sibirica biomass [J]. ACS Omega, 2020,5(12): 6288-6298. [29] Yu J, Sun L, Berrueco C, et al. Influence of temperature and particle size on structural characteristics of chars from beechwood pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2018,130,127−134. [30] Xie Y, Li C, Zhao L, et al. Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke [J]. Applied Surface Science. 2015,333:59−67. [31] 王诗生,张梦梦,盛广宏,等.磁性生物炭吸附水中甲基橙的作用机制-基于密度泛函理论与实验研究[J]. 中国环境科学, 2023,43(9): 4596-4605. Wang S S, Zhang M M, Sheng G H, et al. Adsorption mechanism of methyl orange by using the magnetic biochar —Based on density functional theory and batch adsorption experiment study [J]. China Environmental Science, 2023,43(9):4596-4605. [32] 刘思强,信欣,杨雯钰,等.不同热解温度BC对BAF处理水产养殖废水的影响机制[J]. 中国环境科学, 2023,43(3):1131-1141. Liu S Q, Xin X, Yang W Y, et al. Influence mechanisms of BC filters of different pyrolysis temperatures on BAFs treating aquaculture wastewater [J]. China Environmental Science, 2023,43(3):1131-1141. [33] 马锋锋,赵保卫,刁静茹.小麦秸秆生物炭对水中Cd2+的吸附特性研究[J]. 中国环境科学, 2017,37(2):551-559. Ma F F, Zhao B W, Diao J R. Adsorptive characteristics of cadmium onto biochar produced from pyrolysis of wheat straw in aqueous solution [J]. China Environmental Science, 2017,37(2):551-559. [34] 王诗生,赵大唯,章慧娟,等.磁性氮掺杂碳材料活化过硫酸盐降解酸性橙7[J]. 环境科学学报, 2022,42(4):1-10. Wang S S, Zhao D W, Zhang H J, et al. Magnetic N-doped carbonaceous materials activated persulfate for degradation of Acid Orange 7[J]. Acta Scientiae Circumstantiae, 2022,42(4):1-10. [35] Silva P M M D, Camparotto N G, Figueiredo N T D, et al. Effective removal of basic dye onto sustainable chitosan beads batch and fixed-bed column adsorption, beads stability and mechanism [J]. Sustainable Chemistry and Pharmacy, 2020,18:100348. [36] 张山,李宁,黄婷,等.污泥基生物炭导电性能的构效机制研究[J]. 中国环境科学, 2023,43(4):1773-1781. Zhang S, Li N, Huang T, Su M X. Structure-activity mechanism of electrical conductivity of sludge-based biochar [J]. China Environmental Science, 2023,43(4):1773-1781. [37] Li H H, Peng X Y, An M, et al. Negative effect of SO2 on mercury removal over catalyst/sorbent from coal-fired flue gas and its coping strategies: A review [J]. Chemical Engineering Journal, 2023,455: 140751. [38] Tao S S, Li C T, Fan X P, et al. Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas [J]. Chemical Engineering Journal, 2012,210:547-56. [39] Yang J P, Zhao Y C, Zhang J Y, et al. Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash: Part 2. Identification of involved reaction mechanism, Fuel, 2016,167:366-374. [40] Cao Q, Wang C, Tang D, et al. Enhanced elemental mercury removal in coal-fired flue gas by modified algal waste-derived biochar: Performance and mechanism [J]. Journal of Environmental Management, 2023,325:116427. [41] 李伟杰,张传明,康金灿,等.镧改性Cu/SiO2催化剂的乙酸甲酯高效加氢催化性能研究[J]. 燃料化学学报(中英文), 2024,52(2):131- 139. Li W J, Zhang C M, Kang J C,et al. Study on highly efficient hydrogenation of methyl acetate over the lanthanum metal-modified Cu/SiO2 catalyst [J]. Journal of Chemistry and Technology, 2024,52(2): 131-139. [42] 董璐.燃煤烟气磁性吸附剂脱汞性能及机理研究[D]. 南京:东南大学, 2021. Dong L. Research on the performance and mechanism of mercury removal by magnetic sorbent from coal-fired flue gas [D]. Nanjing: Southeast China University, 2021. [43] Liu Y, Yang X, Zhang J, et al. Process simulation of preparing biochar by biomass pyrolysis via aspen plus and its economic evaluation [J]. Waste and Biomass Valorization, 2022,13(5):2609-2622. [44] Yang Q, Han F, Chen Y, et al. Greenhouse gas emissions of a biomass-based pyrolysis plant in China [J]. Renewable and Sustainable Energy Reviews, 2016,53:1580-1590. [45] 刘俊伟,田秉晖,张培栋,等.秸秆直燃发电系统的生命周期评价[J]. 可再生能源, 2009,27(5):102-106. Liu J W, Tian B H, Zhang P D, et al. Life cycle assessment on straw directly combustion for power generation system [J]. Renewables, 2009,27(5):102-106. [46] Harsono S S, Grundman P, Lau L H, et al. Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches [J]. Resources Conservation and Recycling, 2013,77:108-115. [47] Liu Y, Zhu Z, Shi J, et al. Facile synthesis and economic analysis of Cu/C catalyst for efficient biodiesel production [J]. International Journal of Energy Research, 2022,46(14):19814-19825. |
|
|
|