|
|
Hydrochemical characteristics and fluorine genesis of different water bodies in coal-fired power agglomeration area of Northwest China |
HAN Xuan1, HUANG Lei1,2, LIU Ting-xi1,2, HOU Ze-ming1, LI Yan-na1, XU Jiang1 |
1. Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; 2. Cooperative Innovation Center of Inner Mongolia Autonomous Region for Comprehensive Management of Water Resources and Water Environment in the Yellow River Basin, Hohhot 010018, China |
|
|
Abstract In order to explore the hydrochemical characteristics of different water bodies and the causes of fluorine ion distribution in the Northwest coal-electricity agglomeration area, the Bulianta mining area in Ordos City was taken as the research object. The Piper three-line diagram, principal component analysis, correlation analysis and other methods were used to test the collected 55water samples, and the non-carcinogenic health assessment model was used to evaluate the health risk of fluorine ions in groundwater. The results show that all water samples were weakly alkaline; Na+ and SO42- were the dominant ions of surface water and deep groundwater, and the dominant ions of shallow groundwater were Ca2+ and HCO3-. The hydrochemical types of surface water were mainly SO4Cl-Na and HCO3SO4-Na. There are many chemical types of shallow groundwater, mainly SO4Cl-Na·Ca, HCO3-Na·Mg, HCO3-Mg and SO4Cl-Ca, while the deep groundwater is mainly HCO3SO4-Ca and SO4-Na. Its hydrochemical characteristics are mainly due to the influence of silicate weathering and dissolution, and coal mining activities promote the interaction between different water bodies. The variation ranges of F-in surface water, shallow groundwater and deep layer were respectively 0.16 ~4.82, 0~0.69, 0.08~6.26mg/L in surface water, shallow groundwater and deep layer, respectively. 19.35% of the risk index of F- in groundwater exceeded HQ=1, and it is assumed that the high fluorine phenomenon in groundwater in this area has certain impacts on human health.
|
Received: 30 November 2023
|
|
|
|
|
[1] Han Y, Zheng G Q, Pan J X, et al. Study on the hydrogeochemistry and isotope characteristics of Ordovician groundwater in Yanzhou coalfield, North China [C]//Progress in Mine Safety Science and EngineeringⅡ London:CRC Press, 2014. [2] 郝春明,张伟,何瑞敏,等.神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报, 2021,46(6):1966-1977. Hao C M, Zhang W, He R M, et al. Formation mechanisms for elevated fluoride in the mine water in Shendong coal-mining distr [J]. Journal of China Coal Society, 2021,46(6):1966-1977. [3] Li P Y, Qian H, Wu J H, et al. Occurrence and Hydrogeochemistry of Fluoride in Alluvial Aquifer of Weihe River, China [J]. Environmental Earth Sciences, 2014,71(7):3133-3145. [4] Wu J H, Li P Y, Qian H. Hydrochemical charac terization of drinking groundwater with special reference to fluoride in an arid area of China and the control of aquifer leakage on its concentrations [J]. Environmental Earth Sciences, 2015,73(12):8575-8588. [5] 朱亮,孙继朝,刘景涛,等.兰州市地下水氟分布规律及影响因素分析[J]. 环境科学与技术, 2015,38(4):144-148. Zhu L, Sun J C, Liu J T et al. Distributing regularity and influencing factors of fluorine in Lanzhou City [J]. Environmental Science & Technology, 2015,38(4):144-148. [6] 郭洋楠,杨俊哲,张政,等.神东矿区矿井水的氢氧同位素特征及高氟矿井水形成的水-岩作用机制[J]. 煤炭学报, 2021,46(S2):948- 959. Guo Y N, Yang J Z, Zhang Z et al. Hydrogen and oxygen isotope characteristics of mine water in the Shendong mine area and water-rock reactions mechanism of the formation of high fluoride mine water [J]. Journal of China Coal Society, 2021, 2021,46(S2): 948-959. [7] 任福弘,曾溅辉,刘文生,等.高氟地下水的水文地球化学环境及氟的赋存形式与地氟病患病率的关系──以华北平原为例[J]. 地球学报, 1996,17(1):85-97. Ren F H, Zeng J H, Liu W S, et al. Hydrogeochemical environment of high fluorine groundwater and the relation between the speciation of fluorine and the diseased ratio of endemic fluorosis──a case study of the North China plain [J]. Acta Geoscientia Sinica, 1996,17(1):85-97. [8] 毛若愚,郭华明,贾永锋,等.内蒙古河套盆地含氟地下水分布特点及成因[J]. 地学前缘, 2016,23(2):260-268. Mao R Y, Guo H M, Jia Y F, et al. Distribution characteristics and genesis of fluoride groundwater in the Hetao Basin, Inner Mongolia [J]. Earth Science Frontiers, 2016,23(2):260-268. [9] Fuge R. Fluorine in the environment, a review of its sources and geochemistry [J]. Applied Geochemistry, 2019,100:393-406. [10] 戴志鹏,罗艳丽,王翔.新疆奎屯河流域高砷、高氟地下水的分布特征[J]. 环境保护科学, 2019,45(4):81-86. Dai Z P, Luo Y L, Wang X. Distribution characteristics of high arsenic and fluorine in groundwater of Kuitun River Basin in Xin Jiang [J]. Environmental Protection Science, 2019,45(4):81-86. [11] 孟春霞,郑西来,王成见.平度市高氟地下水分布特征及形成机制研究[J]. 中国海洋大学学报(自然科学版), 2019,49(11):111-119. [12] Qian J Z, Wang L, Ma L, et al. Multivariate statistical analysis of water chemistry in evaluating groundwater geochemical evolution and aquifer connectivity near a large coal mine, Anhui, China [J]. Environmental Earth Sciences, 2016,75(9):1-10. [13] Yang Z Y, Huang P H, Ding F F.Groundwater hydrogeochemical mechanisms and the connectivity of multilayer aquifers in a coal mining region [J]. Mine Water and the Environment, 2020,39(4):808- 822. [14] Huang P H, Chen J S. Recharge sources and hydrogeochemical evolution of groundwater in the coal-mining district of Jiaozuo, China [J]. Hydrogeology Journal, 2012,20(4):739-754. [15] Batabyal A K.Hydrogeochemistry and quality of groundwater in a part of Damodar Valley,eastern India:an integrated geochemical and statistical approach [J]. Stochastic Environmental Research and Risk Assessment, 2018,32(8):2351-2368. [16] 曾海鳌,吴敬禄.塔吉克斯坦水体同位素和水化学特征及成因[J]. 水科学进展, 2013,24(2):272-279. Zeng H A, Wu J L.Water isotopic and hydrochemical characteristics and causality in Tajikistan [J]. Advances in Water Science, 2013,24(2):272-279. [17] 王家鼎.靖边掌高兔水源地湖泊演化历史模拟分析[J]. 西北大学学报(自然科学版), 2013,43(4):113-116. [18] 葛佳亮.靖边县平原地区地下水环境变化及水源保护区划定[D]. 西安:长安大学, 2019:30-51. [19] 何锦,安永会,韩双宝.张掖市甘州区地下水中氟的分布规律和成因[J]. 水资源保护, 2008,24(6):53-56. He J, An Y H, Han S B, et al. Distribution and sources of fluorin ion in groundwater in Ganzhou District of Zhangye City [J]. Water Resources Protection, 2008,24(6):53-56. [20] 陈占强,马腾,陈柳竹,等.后套平原浅层高氟地下水分布及成因[J]. 地球科学, 2021,48(10):3856-3865. Chen Z Q, Ma T, Chen L Z, et al. Distribution and formation of shallow groundwater with high fluoride in Houtao Plain [J]. Earth Science, 2021,48(10):3856-3865. [21] Gao Z J, Shi M J, Zhang H Y, et al. Formation and in situ treatment of high fluoride concentrations in shallow groundwater of a semi-arid region: Jiaolai Basin, China [J]. International Journal of Environmental Research and Public Health, 2020,17(21):8075. [22] HJ/T164-2004地下水环境监测技术规范[S]. HJ/T164-2004 HJ/T164-2004Technical specifications for groundwater environmental monitoring [S]. [23] 孟利,左锐,王金生,等.基于PCA-APCS-MLR的地下水污染源定量解析研究[J]. 中国环境科学, 2017,37(10):3773-3786. Memg L, Zuo R, Wang J S, et al. Quantitative source apportionment of groundwater pollution bases on PCA-APCS-MLR [J]. China Environmental Science, 2017,37(10):3773-3786. [24] Yadav A, Nabda A, Sahu Y h, et al. Groundwater hydrochemistry of Rajnandgaon district, Chhattisgarh, Central India [J]. Groundwater for Sustainable Development, 2020,11. [25] 曹阳,滕彦国,刘昀竺.吴忠市金积水源地地下水水质影响因素的多元统计分析[J]. 吉林大学学报(地球利学版), 2013.43(1):235- 244. Cao Y, Teng Y G, Liu Y J. Multivariate statistical approach to identify influencing factors of groundwater quality in Jinji water source of Wuzhong City [J]. Journal of Jilin University (Earth Science Edition), 2013,43(1):235-244. [26] 李连香,许迪,程先军,等.基于分层构权主成分分析的皖北地下水水质评价研究[J]. 资源科学, 2015,37(1):61-67. Li L X, Xu D, Cheng X J, et al. Groundwater quality assessment in Northern Anhui based on multi-layer weighted principal component analysis [J]. Resources Science, 2015,37(1):61-67. [27] 刘达,肖长来,梁秀娟,等白城市地下水中氟分布特征及风险评价[J]. 人民长江, 2019,50(6):25-28,75. [28] 王进军,刘占旗,古晓娜,等.环境致癌物的健康风险评价方法[J]. 国外医学(卫生学分册), 2009,36(1):50-58. [29] The US EPA. Available information on assessment exposure from pesticides in food [R]. U S Environmental Protection Agency Office of Pesticide Programs, 2000. [30] US EPA. AvailableInformation on Asssment Expsure from Pestides in Food [R]. Washington D C: U. S.Environmental Protection Agency Office of Psticide Pro- grams, 2000:1-16. [31] Adimalla N, Qian H, Li P. Entropy water quality index and probabilistic health risk ssessmen from geochemistry of ground- waters in hard rock terrain of Nanganur County, South India. Geo- chemistry, 2020,80(4):125544. [32] 孙龙,刘廷玺,段利民,等.平朔矿区不同水体水化学特征及氟分布成因[J]. 环境科学, 2022,43(12):5547-5559. [33] 陈陆望,许冬清,殷晓曦,等.华北隐伏型煤矿区地下水化学及其控制因素分析———以宿县矿区主要突水含水层为例[J]. 煤炭学报, 2017,42(4):996-1004. Chen L W, Xu D Q, Yin X X, et al. Analysis on hydrochemistry and its control factors in the concealed coal mining area in North China:a case study of dominant inrush aquifers in Suxian mining area [J]. Journal of China Coal Society, 2017,42(4):996-1004. [34] Yang P H, Luo D, Hong A H, et al. Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes [J]. Journal of Hydrology, 2019,579,124116. [35] Zhang Q Q, Miao L P, Wang H W, et al. How rapid urbanization drives deteriorating groundwater quality in a provincial capital of China [J]. Polish Journal of Environmental Studies. 2019,29:441-450. [36] 程东会,陈鸿汉,何江涛,等.北京城近郊区地下水人为影响和水-岩作用指示性指标研究[J]. 水文地质工程地质, 2007,34(5):37-42. Cheng D H, Chen H H, He J T, et al. A study of indicators of anthropogenic influence and water-rock interaction in groundwater system in the urban region of Beijing [J]. Hydrogeology & Engineering Geology, 2007,34(5):37-42. [37] 郑淑惠,侯发高,倪葆龄,等.我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983,28(13):801-806. Zheng S H, Hou F G, Ni B L, et al. A study onstable hydrogen and oxygen isotopes of atmosphericprecipitation in China [J]. Chinese Science Bulletin, 1983,28(13):801-806. [38] Pang Z H, Kong Y L, Li 1, et al. An isotopic gcoindicator in the hydrological cycle [J]. Procedia Earthand Planctary Science. 2017,17: 534-537. [39] 房丽晶,高瑞忠,贾德彬,等.内蒙古草原巴拉格尔河流域不同水体转化特征及环境驱动因素[J]. 应用生态学报, 2021,32(3):860-868. [40] Lockhart K M, King A M, Harter T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production [J]. Journal of Contaminant Hydrology, 2013,151:140-154. [41] 洪涛,谢运球,喻崎雯,等.乌蒙山重点地区地下水水化学特征及成因分析[J]. 地球与环境, 2016,44(1):11-18. Hong T, Xie Y Q, Yu Q W, et al. Hydrochemical characteristics study and genetic analysis of groundwater in a key region of the Wumeng Mountain, Southwestern China [J]. Earth and Environment, 2016,44(1):11-18. [42] Zhou B, Wang H H, Zhang Q Q, et al. Assessment of the evolution of groundwater chemistry and its controlling factors in the Huangshui River Basin of northwestern China, using hydrochemistry and multivariate statistical techniques [J]. International Joural. Environmental Research and Public Health, 2021,18(14). [43] 万利勤,徐慧珍,殷秀兰,等.济南岩溶地下水化学成分的形成[J]. 水文地质工程地质, 2008,35(3):61-64. Wan L Q, Xu H Z, Yin X L, et al. Formation of hydrochemistry components of karst groundwater in Jinan [J]. Hydrogeology & Engineering Geology, 2008,35(3):61-64. [44] Davis J C.Statistics and data analysis in geology [J]. Biometrics, 1986,44(3):526-527. [45] Cloutier V, LefebvreR, Therrien R, et al. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system [J]. .Journal of Hydrology, 2008,353(3/4):294-313. [46] Guo H M, Zhang Y, Xing L N, et al. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao Basin, Inner Mongolia [J]. Applied Geochemistry, 2012,27(11):2187-2196. [47] 吴代赦,郑宝山,唐修义,等.中国煤中氟的含量及其分布[J]. 环境科学, 2005,26(1):7-11. Wu D S, Zheng B S, Tang X Y, et al. Content and distribution of fluorine in Chinese coals [J]. Environmental Science, 2005,26(1): 7-11. [48] Li J, Wang Y, Zhu C, et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain [J]. Science of the Total Environment, 2020,730: 138877. |
|
|
|