|
|
Study on the risk zoning of secondary sudden water pollution caused by geological disasters in the upper reaches of the Yangtze River |
ZHOU Xia-fei1,2,3,4, ZHOU Sheng-sen5, XU Xiang-yu3,4, Xie Ming-li5, XU Ze-sheng3,4, CAO Guo-zhi3,4, WANG Kun-peng3,4 |
1. College of Management and Economics, Tianjin University, Tianjin 300072, China; 2. National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300072, China; 3. Center for Ecological and Environmental Risk and Damage Assessment, Chinese Academy for Environmental Planning, Ministry of Ecology and Environment, Beijing 100041, China; 4. State Environmental Protection Key Laboratory of Environmental Damage Identification and Restoration, Beijing 100041, China; 5. State Key Laboratory of Geohazard prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China |
|
|
Abstract This study proposed a risk assessment framework of "geological hazards-risk sources-transmission pathways-sensitive receptors" and conducted a zoning assessment of secondary sudden water pollution risks from geological disasters in the upper reaches of the Yangtze River. The risk field assessment method was employed in this work and a 1km×1km grid is the basic unit. A set of data was utilized and processed by the authors, including geological disaster hidden danger points Survey data, environmental statistics data, DEM data and water quality monitoring section data. The results show that: ① The high-risk area is 22,534.1km2, accounting for 2.3% of the total area; 105,239.1km2 and 10.7%, 857, 694.4km2 and 87.0% for medium-risk and low-risk areas separately. ② From the perspective of spatial distribution, high-risk areas are mainly located in Chongqing, the southeastern part of Longnan, the central part of Mianyang, the northern part of Nanchong, the southeastern part of Aba Prefecture, the southern part of Ya'an, the central part of Liangshan Prefecture, and the western part of Deyang. ③ In terms of the spatial distribution along key riverbanks, the high-risk areas are mainly distributed along the Chongqing section of the Yangtze River, the Panzhihua section of the Jinsha River, the Longnan and Nanchong sections of the Jialing River, the Chengdu and Aba sections of the Min River, and the Liangshan Prefecture section of the YaLung River.
|
Received: 09 December 2023
|
|
|
|
|
[1] Zou F, Che E, Long M. Quantitative assessment of geological hazard risk with different hazard indexes in mountainous areas [J]. Journal of Cleaner Production, 2023,413,137467. [2] 全国地质灾害防治“十四五”规划(自然资发〔2022〕216号) [Z]. The 14th Five Year Plan for national geological disaster prevention and Control (Natural Resources Development [2022] No. 216) [Z]. [3] 邹强,崔鹏,张建强,等.长江上游地区泥石流灾害敏感性量化评价研究[J]. 环境科学与技术, 2012,35(3):159-163. Zou Q, Cui P, Zhang J Q et al. Quantitative evaluation for susceptibility of debris flow in upper Yangtze River Basin. Environmental Science & Technology, 2012,35(3):159-163. [4] Cao G Z, Yang L, Liu L X, et al. Environmental incidents in China: Lessons from 2006 to 2015[J]. Science of the Total Environment, 2018,633:1165-1172. [5] 新华网.四川涪江锰矿水污染特大泥石流扩散污染源[N]. 2011: https://www.chinanews.com/gn/2011/07-28/3216625.shtml. Xinhua News Agency. The source of water pollution caused by the massive debris flow diffusion in the Fujiang manganese mine in Sichuan Province [N]. 2011: https://www.chinanews.com/gn/2011/07-28/3216625.shtml. [6] 生态环境部.贵州遵义桐梓中石化西南成品油管道柴油泄漏事故次生重大突发环境事件调查报告[N]. 2020: https://www.mee.gov. cn/home/ztbd/2021/yacjtshjyjnl/yacjdxal/202103/t20210312_824445.shtml. Ministry of Ecology and Environment Investigation. Report on Secondary Major Environmental Emergencies Caused by Diesel Leakage Accident in Sinopec Southwest Oil Pipeline in Tongzi, Zunyi, Guizhou [N]. 2020: https://www.mee.gov.cn/home/ztbd/2021/ yacjtshjyjnl/yacjdxal/202103/t20210312_824445.shtml. [7] 周夏飞,曹国志,於方,等.长江经济带突发水污染风险分区研究[J]. 环境科学学报, 2020,40(1):334-342. Zhou X F, Cao G Z, Yu F, et al. Risk zoning of acute water pollution in the Yangtze River Economic Belt [J]. Acta Scientiae Circumstantiae, 2020,40(1):334-342. [8] Cao G Z, Gao Y, Wang J N, et al. Spatially resolved risk assessment of environmental incidents in China [J]. Journal of Cleaner Production, 2019,219:856-864. [9] Lin J H, Lin M S, Chen W H, et al. Ecological risks of geological disasters and the patterns of the urban agglomeration in the Fujian Delta region [J]. Ecological Indicators, 2021,125:107475. [10] Lin J H, Chen W H, Qi X H, et al. Risk assessment and its influencing factors analysis of geological hazards in typical mountain environment [J]. Journal of Cleaner Production, 2021,309:127077. [11] 地质灾害危险性评估规范(GB/T 40112-2021) [S]. Specification for geological hazard assessment (GB/T 40112-2021) [S]. [12] 周夏飞,曹国志,於方,等.黄河流域水污染风险分区[J]. 环境科学, 2022,43(5):2448-2458. Zhou X F, Cao G Z, Yu F, et al. Risk zoning of water pollution in the Yellow River Basin [J]. Environmental Science, 2022,43(5):2448- 2458. [13] 周夏飞,於方,刘琦,等.东江流域突发水污染风险分区研究[J]. 生态学报, 2020,40(14):4813-4822. Zhou X F, Yu F, Liu Q, et al. Risk zoning of sudden water pollution in Dongjiang River basin [J]. Acta Ecologica Sinica, 2020,40(14):4813- 4822. [14] 邢永健.区域突发性环境风险评价方法研究[D]. 沈阳:沈阳航空航天大学, 2017. Xing Y J. Study on regional acute environmental risk assessment method [D]. Shengyang: Shenyang Aerospace University, 2017. [15] 刘仁志,董蕾,刘静,等.滨海地区突发性水污染事故风险评估[J]. 应用基础与工程科学学报, 2015,23(S1):41-49. Liu R Z, Dong L, Liu J, et al. An environmental risk assessment method of abrupt water pollution accidents in coastal areas [J]. Journal of Basic Science and Engineering, 2015,23(S1):41-49. [16] Kumar R, Anbalagan R. Landslide susceptibility mapping using Analytical Hierarchy Process (AHP) in Tehri Reservoir Rim Region, Uttarakhand [J]. Journal of the Geological Society of India, 2016, 87(3):271-286. [17] Peng S H, Wang K. Risk evaluation of geological hazards of mountainous tourist area: a case study of Mengshan, China [J]. Natural Hazards, 2015,78(1):517-529. [18] Yalcin A, Reis S, Aydinoglu A C, et al. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey [J]. Catena, 2011,85(3):274-287. [19] 张群,易靖松,张勇,等.西南山区县域单元的地质灾害风险评价——以怒江流域泸水市为例[J]. 自然灾害学报, 2022,31(5):212- 221. Zhang Q, Yi J S, Zhang Y, et al. Geohazard risk assessment about county units in southwest mountainous areas of China: Take Lushui County of Nujiang river basin as an example [J]. Journal of Natural Disasters, 2022,31(5):212-221. [20] 李春燕,孟晖,张若琳,等.基于承灾体易损性的县域单元地质灾害风险评估[J]. 地质通报, 2021,40(9):1547-1559. Li C Y, Meng H, Zhang R L, et al. Geological hazard risk assessment based on vulnerability of disaster-bearing body at county unite scale. Geological Bulletin of China, 2021,40(9):1547-1559. [21] 黄蕾,黄雨佳,刘朋辉,等.区域综合环境风险评价方法体系研究[J]. 中国环境科学, 2020,40(12):5468-5474. Huang L, Huang Y J, Liu P H, et al. Research on regional comprehensive environmental risk assessment method system [J]. China Environmental Science, 2020,40(12):5468-5474. [22] 薛鹏丽,曾维华.上海市突发环境污染事故风险区划[J]. 中国环境科学, 2011,31(10):1743-1750. Xue P L, Zeng W H. Shanghai environmental accidents risk regionalization [J]. China Environmental Science, 2011,31(10):1743- 1750. [23] 邢永健,王旭,可欣,等.基于风险场的区域突发性环境风险评价方法研究[J]. 中国环境科学, 2016,36(4):1268-1274. Xing Y J, WANG X, Ke X, et al. Method of regional acute environmental risk assessment based on risk field [J]. China Environmental Science, 2016,36(4):1268-1274. [24] 袁锦涛,韩培锋,欧小红,等.基于DEM的滑坡碎屑流运动堆积特性研究[J]. 自然灾害学报, 2023,32(3):230-238. Yuan J Y, Han P F, Ou X H, et al. Study of the accumulation characteristics of landslide debris flow movement based on DEM [J]. Journal of Natural Disasters, 2023,32(3):230-238. [25] 樊晓一,张睿骁,胡晓波.沟谷地形参数对滑坡运动距离的影响研究[J]. 地质力学学报, 2020,26(1):106-114. Fan X Y, Zhang R X, HU X B et al. Study on the influence of valley topographic parameter on the moving distance of landslide [J] Journal of Geomechanics, 2020,26(1):106-114. [26] 杨海龙,裴向军,樊晓一.坡脚型滑坡运动特征分析及运动距离预测[J]. 工程地质学报, 2019,27(6):1379-1388. Yang H L, Pei X J, Fan X Y, et al. Movement characteristics and distance prediction of slope-toe landslides [J]. Journal of Engineering Geology, 2019,27(6):1379-1388. [27] Sajadi P, Sang Y F, Gholamnia M, et al. Evaluation of the landslide susceptibility and its spatial diference in the whole Qinghai-Tibetan Plateau region by fve learning algorithms [J]. Geoscience Letters, 2023,9(1):1-25. [28] Hong H Y, Miao Y M, Liu J Z, et al. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping [J]. Catena, 2019,176: 45-64. [29] 栗晓松.秦巴山区滑坡转化泥石流特征及运动过程数值模拟[D]. 西安:长安大学, 2022. Li X S. The characteristics of landslides transformed into debris flows and numerical simulation of movement processes in Qin-Ba Mountains [D]. Xian: Chang’an University, 2022. [30] Liang Z, Wang C M, Zhang Z M, et al. A comparison of statistical and machine learning methods for debris flow susceptibility mapping [J]. Stochastic Environmental Research and Risk Assessment, 2020,34(11):1887-1907. [31] Zhang Y H, Ge T T, Tian W, et al. Debris Flow Susceptibility Mapping Using Machine-Learning Techniques in Shigatse Area, China [J]. Remote Sensing, 2019,11(23):2801. [32] 王向前,丁明涛,何雨枫.基于RF模型的甘孜藏族自治州乡城县泥石流易发性评价[J]. 灾害学, 2023,38(3):222-226. Wang X Q, Ding M T, He Y F. Assessment of debris flow vulnerability in Xiangcheng County, Ganzi Tibetan Autonomous Prefecture based on RF model [J]. Journal of Catastrophology, 2023,38(3):222-226. [33] HJ 941-2018企业突发环境事件风险分级方法[S]. HJ 941-2018 Risk classification method for sudden environmental incidents in enterprises [S]. [34] 行政区域突发环境事件风险评估推荐方法(环办应急〔2018〕9号) [Z]. Recommended method for risk assessment of sudden environmental incidents in administrative regions (Environmental Emergency Management Office [2018] No. 9) [Z]. [35] Gao Y, Cao G Z, Hu L T, et al. Spatially resolved risk assessment of Natech in the Yangtze River Economic Belt, China [J]. Process Safety and Environmental Protection, 2022,159:1039-1052. [36] Gao Y, Cao G Z, Ni P, et al. Natural hazard triggered technological risks in the Yangtze River Economic Belt, China [J]. Scientific Reports, 2021,11(1):13842. [37] HJ 740-2015尾矿库环境风险评估技术导则(试行) [S]. HJ 740-2015 Technical Guidelines for Environmental Risk Assessment of Tailings Ponds (Trial) [S]. [38] 尾矿库环境监管分类分级技术规程(试行)(环办固体函〔2021〕613号) [Z]. Technical regulations for classification and grading of environmental supervision of tailings ponds (Trial) (Environmental Protection Office Solid Letter [2021] No. 613) [Z]. [39] 王肖惠,陈爽,秦海旭,等.基于事故风险源的城市环境风险分区研究——以南京市为例[J]. 长江流域资源与环境, 2016,25(3):453- 461. Wang X H, Chen S, Qing H X, et al. Zoning of urban environment risk based on accident risk sources — a case study of Nanjing [J]. Resources and Environment in the Yangtze Basin, 2016,25(3):453- 461. [40] 赖玢洁,田金平,刘巍,等.中国生态工业园区发展的环境绩效指数构建方法[J]. 生态学报, 2014,34(22):6745-6755. Lai B J, Tian J P, Liu W, et al. Environmental performance index for eco-industrial park development in China [J]. Acta Ecologica Sinica, 2014,34(22):6745-6755. [41] GB 39496-2020尾矿库安全规程[S]. GB 39496-2020 Safety regulations for tailings ponds [S]. [42] 曹兴,薛丽洋,王亚变,等.渭河流域甘肃段突发水污染风险评估[J]. 西北师范大学学报(自然科学版), 2022,58(3):123-128. Cao X, Xue L Y, Wang Y B, et al. Risk assessment of sudden water pollution for Weihe River basin in Gansu Province [J]. Journal of Northwest Normal University (Natural Science), 2022,58(3):123-128. |
[1] |
DU Jin-hua, TAO Wen-xin, ZHANG Yi-sheng, LIU Zi-yang, YANG Jian-li, ZHANG Su-fan, WANG Chao-long, CUI Shan-shan, XUE-Lian, ZHANG Hou-yong, SUN Ying-jie. Source apportionment and health risk assessment of metal elements in PM1 on different weather types during autumn and winter-A case study of Qingdao[J]. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(8): 4179-4192. |
|
|
|
|