|
|
Effect of temperature conversion on continuous operation and microbial community of anaerobic digestion system |
TANG Shan-qing1,2, XIE Yan-pei2, LIU Zhi-feng1, ZHANG Yuan-yuan2, ZHANG Xian-sheng1, GENG Xue-hai2, WANG Mi-er1, PAN Yuan1, HUANG Xin-yi1, TANG Lin1 |
1. College of Environmental Science & Engineering, Hunan University, Changsha 410082, China; 2. Changsha Zoomlion Environmental Industry Co., Ltd, Changsha 410006, China |
|
|
Abstract Through 210 days of continuous anaerobic digestion experiment in the same anaerobic digestion system with food waste as fermentation substrate, the conversion of fermentation temperature from medium temperature to high temperature was achieved. In medium temperature fermentation stage, the maximum organic loading rates (OLR) was 6.5kg COD/(m3·d), the average biogas production rate was 658L/(kg COD·d); Methanosaeta (57.0%)、Methanospirillum (10.0%)、Methanomethylovorans (9.2%) and Methanobacterium (19.7%), which formed a symbiotic relationship with hydrolytic acidifying bacteria and homoacetogenesis to achieve efficient methanogenic process, were included in the dominant methanogens. After 35 days’ heating process, the medium temperature fermentation system smoothly converted into high temperature system. In high temperature fermentation stage, the maxium OLR was 5.0kg COD/(m3·d), and the average biogas production rate was 480L/(kg COD·d); Methanoculleus (96.2%) became dominant methanogenic bacteria, and formed an interacting relationship with syntrophic hydrogen-producing bacteria and syntrophic acetate oxidation bacteria, which jointly promoted H2utilization and methanogenic process. However, obvious acidification trend and reduced gas production efficiency appeared in later stage of high-temperatures system. It was inferred that the activity of methanogens was inhibited with highly enriching of hydrolytic acid-producing bacteria, resulting the imbalance of organic acids production and utilization and the system collapse. Therefore, online temperature conversion of anaerobic fermentation system was technically feasible, but the performance and stability of high temperature fermentation system were lower than that of medium temperature fermentation system.
|
Received: 15 January 2024
|
|
Corresponding Authors:
刘智峰,教授,zhifengliu@hnu.edu.cn
E-mail: zhifengliu@hnu.edu.cn
|
|
|
|
[1] 代媛,徐锐,李杰男,等.餐厨垃圾厌氧消化接种物驯化过程中微生物群落多样性的变化[J]. 可再生能源, 2016,34(12):1891-1896. Dai Y, Xu R, Li J N, et al. The variation of microbial community diversity during inoculum acclimation process of food waste anaerobic digestion [J]. Renewable Energy Resources, 2016,34(12):1891-1896. [2] 施宇森,应李广,黄顺寅,等.餐厨垃圾中高温厌氧发酵的产沼动力学模拟及比较研究[J]. 安徽农学通报, 2020,26(13):155-158. Shi Y S, Ying L G, Huang S Y, et al. Kinetic modelling and camparision on biogas production of mesophilic and thermophilic anaerobic digestion of food waste [J]. Anhui Agricultural Science Bulletin, 2020,26(13):155-158. [3] 张文哲,陈静,刘玉,等.中温和高温厌氧消化的比较[J]. 化工进展, 2018,37(12):4853-4861. Zhang W Z, Chen J, Liu Y, et al. Comparison of mesophilic and thermophilic anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2018,37(12):4853-4861. [4] 董蕾,占美丽,孙英杰,等.餐厨垃圾高温厌氧消化[J]. 环境工程学报, 2013,7(6):2355-2360. Dong L, Zhan M L, Sun Y J, et al. Thermophilic anaerobic digestion of food waste [J]. Chinese Journal of Environmental Engineering, 2013,7(6):2355-2360. [5] 李超伟,康勇,高磊,等.高温厌氧消化处理餐厨垃圾试验研究[J]. 中国沼气, 2014,32(3):18-21. Li C W, Kang Y, Gao L, et al. Characteristics of thermophilic anaerobic digestion of kitchen waste [J]. China Biogas, 2014,32(3):18-21. [6] 姜萌萌,林敏,汪昱昌,等.餐厨垃圾高温厌氧消化连续运行性能:有机物转化效率,发酵稳定性与代谢活性[J]. 新能源进展, 2022, 10(1):1-8. Jiang M M, Lin M, Wang Y C, et al. Anaerobic digestion performance of food waste under thermophilic condition: conversion efficiency, stability and metabolic activity [J]. Advances in New and Renewable Enengy, 2022,10(1):1-8. [7] 曹秀芹,袁海光,丁浩,等.餐厨垃圾湿式厌氧消化最优有机负荷及失稳指标[J]. 环境工程学报, 2018,12(7):2123-2131. Cao X Q, Yuan H G, Ding H, et al. Exploration of optimal organic loading rates and instability indicators in wet anaerobic digestion of kitchen waste [J]. Chinese Journal of Environmental Engineering, 2018,12(7):2123-2131. [8] Tampio E, Ervasti S, Paavola T, et al. Anaerobic digestion of autoclaved and untreated food waste [J]. Waste Management, 2014, 34(2):370-377. [9] 李蕾,何琴,马垚,等.厌氧消化过程稳定性与微生物群落的相关性[J]. 中国环境科学, 2016,36(11):3397-3404. Li L, He Q, Ma Y, et al. Investigation on the relationship between process stability and microbial community in anaerobic digestion [J]. China Environmental Science, 2016,36(11):3397~3404. [10] 汪昱昌,邹婷,陆裕峰,等.餐厨垃圾高温厌氧消化启动和调试探究[J]. 环境卫生工程, 2021,29(4):46-51. Wang Y C, Zou T, Lu Y F, et al. Research on start-up and commissioning of thermophilic anaerobic digestion of food waste [J]. Environmental Sanitation Engineering, 2021,29(4):46-51. [11] Yin D M, Westerholm M, Qiao W, et al. An explanation of the methanogenic pathway for methane production in anaerobic digestion of nitrogen-rich materials under mesophilic and thermophilic conditions [J]. Bioresource Technology, 2018,264(5):42-50. [12] Ren Y, Yu G, Shi C, et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses [J]. iMeta, 2022, 1(2):e12. [13] 张立国,艾冰凌,李建政,等.氧化还原介体强化厌氧活性污泥发酵产氢特征[J]. 中国环境科学, 2021,41(5):2196-2202. Zhang L G, Ai B L, Li J Z, et al. Improving fermentative hydrogen production of anaerobic sludge by redox mediators [J]. China Environmental Science, 2021,41(5):2196-2202. [14] Li L, He Q, Wei Y, et al. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste [J]. Bioresource Technology, 2014,171:491-494. [15] 彭绪亚,贾传兴,潘坚,等.餐厨垃圾单相厌氧消化系统酸化预警指标[J]. 土木建筑与环境工程, 2011,33(4):146-150. Peng X Y, Jia C X, Pan J, et al. Early-warning indicators of acidification in the single-phase anaerobic digestion process for food wastes [J]. Journal of Civil, Architectural and Environmental Engineering, 2011,33(4):146-150. [16] 唐波,李蕾,何琴,等.总氨氮在餐厨垃圾厌氧消化系统中的积累及其抑制作用[J]. 环境科学学报, 2016,36(1):210-216. Tang B, Li L, He Q, et al. Accumulation and inhibition of ammonia on anaerobic digestion of food waste [J]. Acta Scientiae Circumstantiae, 2016,36(1):210-216. [17] Serna-Maza A, Heaven S, Banks C J. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process [J]. Bioresource Technology, 2014,152:307-315. [18] 胡婉蓉.水力停留时间对鸡粪高固体厌氧消化性能的影响研究[D]. 北京:中国地质大学(北京), 2021. Hu W R. The effect of hydraulic retention time on the performance of high-solid aanaerobic digestion of chicken manure [D]. Beijing: China University of Geosciences(Beijing), 2021. [19] 闵海华,刘凯丽,吕龙义,等.餐厨垃圾厌氧共消化研究进展[J]. 环境工程学报, 2022,16(8):2457-2466. Min H H, Liu K L, Lv L Y, et al. Research progress and performance improvement strategies of anaerobic co-digestion of food waste [J]. Chinese Journal of Environmental Engineering, 2022,16(8):2457-2466. [20] Liew L N, Shi J, Li Y. Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment [J]. Bioresource Technology, 2011,102(19):8828-8834. [21] 黄安寿,何永全,曾祖刚.餐厨垃圾高温厌氧消化过程参数研究[J]. 中国沼气, 2019,37(2):34-39. Huang A S, He Y Q, Zeng Z G. Study on parameters of high temperature anaerobic digestion of kitchen waste [J]. China Biogas, 2019,37(2):34-39. [22] Yeniguen O, Demirel B. Ammonia inhibition in anaerobic digestion: A review [J]. Process biochemistry, 2013,48(5/6):901-911. [23] Guo X, Wang C, Sun F, et al. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings [J]. Bioresource Technology, 2014,152:420-428. [24] 王攀,杨鑫玉,郑义,等.厨余垃圾厌氧发酵失稳调控及微生物群落分析[J]. 中国环境科学, 2022,42(4):1770-1779. Wang P, Yang X Y, Zheng Y, et al. Regulation of acidified dry anaerobic digestion of kitchen waste and microbial community analysis [J]. China Environmental Science, 2022,42(4):1770-1779. [25] 王昱琛,宿程远,王晴,等.低温下复合菌剂对餐厨垃圾厌氧消化的影响[J]. 中国环境科学, 2023,43(4):1724-1734. Wang Y C, Su C Y, Wang Q, et al. Effects of compound microbial agents on anaerobic treatment of food waste at low temperature [J]. China Environmental Science, 2023,43(4):1724-1734. [26] 常城,明磊强,牟云飞,等.厨余垃圾与污泥厌氧发酵产甲烷的协同作用[J]. 中国环境科学, 2022,42(3):1259-1266. Chang C, Ming L Q, Mu Y F, et al. Synergistic effect of kitchen waste and sludge anaerobic fermentation for methane production [J]. China Environmental Science, 2022,42(3):1259-1266. [27] Carballa M, Regueiro L, Lema J M. Microbial management of anaerobic digestion exploiting the microbiome-functionality nexus [J]. Current Opinion in Biotechnology, 2015,33:103-111. [28] 马诗淳,彭成慧,邓宇,等.热袍菌门最新研究进展[J]. 中国沼气, 2022,40(5):3-17. Ma S C, Peng C H, Deng Yu, et al. Recent developments in phylum thermotoga [J]. China Biogas, 2022,40(5):3-17. [29] Jang H M, Lee J W, Ha J H, et al. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater [J]. Bioresource Technology, 2013,148:261-269. [30] 安倩.嗜热菌降解废弃生物质产氢偶联产甲烷研究[D]. 广州:华南理工大学, 2020. An Q. Studies on thermophilic hydrogen fermentation from waste biomass coupled with methane production [D]. Guangzhou: South China University of Technology, 2020. [31] 李蕾.餐厨垃圾厌氧消化过程失稳的动力学特征及微生物机理研究[D]. 重庆:重庆大学, 2016. Li L. Study on kinetics characteristics and microbial mechanism of process instability udring anaerobic digestion of food waste [D]. Chongqing: Chongqing University, 2016. [32] Tao Y, Ersahin M E, Ghasimi D S M, et al. Biogas productivity of anaerobic digestion process is governed by a core bacterial microbiota [J]. Chemical Engineering Journal, 2020,380:122425. [33] 何琴.餐厨垃圾厌氧消化起泡及其机理的多尺度研究[D]. 重庆:重庆大学, 2017. He Q. Multiscale study on foaming and its mechanism in anaerobic digestion of food waste [D]. Chongqing: Chongqing University, 2017. [34] 蒋金和.厌氧消化系统中氢气还原二氧化碳产甲烷及其微生物组成和多样性研究[D]. 昆明:云南师范大学, 2021. Jiang J H. Methane production from hydrogen and carbon dioxide and its microbial composition and diversity in anaerobic digestion system [D]. Kunming: Yunnan Normal University, 2021. [35] 王盼亮.厨余垃圾厌氧消化过程中塑化剂和抗生素的影响及控制研究[D]. 上海:华东师范大学, 2022. Wang P L. Effect of plasticizers and antibiotics on anaerobic digestion of food waste and its control [D]. Shanghai: East China Normal University, 2022. [36] Li A, Chu Y N, Wang X, et al. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor [J]. Biotechnology for Biofuels, 2013,6(1):3-3. [37] Du S W, Sun C, Ding A Q, et al. Microbial dynamics and performance in a microbial electrolysis cell-anaerobic membrane bioreactor [J]. Journal of Zhejiang University-SCIENCE A, 2019,20(7):533-545. [38] Lee J, Han G, Shin S G, et al. Seasonal monitoring of bacteria and archaea in a full-scale thermophilic anaerobic digester treating food waste-recycling wastewater: Correlations between microbial community characteristics and process variables [J]. Chemical Engineering Journal, 2016,300:291-299. [39] 张文婧,孔鑫,岳秀萍,等.不同含固率下零价铁提升厨余垃圾高温厌氧消化产沼体系运行稳定性研究[J]. 环境科学学报, 2022, 42(8):372-380. Zhang W J, Kong X, Yue X P, et al. Research on improving the operational stability of thermophilic anaerobic digestion system of kitchen waste by adding zero-valent iron under different solid content rates [J]. Acta Scientiae Circumstantiae, 2022,42(8):372-380. [40] Ziganshin A M, Schmidt T, Scholwin F, et al. Bacteria and archaea involved in anaerobic digestion of distillers grains with solubles [J]. Appl Microbiol Biotechnol, 2011,89(6):2039-2052. [41] Lerm S, Kleyboecker A, Miethling-Graff R, et al. Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload [J]. Waste Manag, 2012,32(3):389-399. [42] 王艳飞.厌氧消化过程中温度对产甲烷代谢途径及微生物群落结构变化的影响研究[D]. 昆明:云南师范大学, 2019. Wang Y F. The effects of temperature on methanogenic metabolic pathways and microbial community during the processes of anaerobic digestion [D]. Kunming: Yunnan Normal University, 2019. |
|
|
|