|
|
The experimental study of cadmium contaminated groundwater remediation by permeable reactive barrier with bamboo charcoal-zeolite mixture |
LI Zi-bang1, ZHANG Liang2, LIU Hao3, GONG Xing1 |
1. School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China; 2. Yangtze River Survey and Technology Research Institute of the Ministry of Water Resources, Wuhan 430011, China; 3. Guangdong Yue Road Survey and Design Co, Guangzhou 510630, China |
|
|
Abstract This paper analyzes the adsorption mechanism of the Permeable Reactive Barrier (PRB) with bamboo charcoal-zeolite mixture to cadmium, as well as its timeliness combining physico-mechanical tests, static batch tests, dynamic column experiments, microscopic characterization analysis, and groundwater flowing numerical simulation. When bamboo charcoals (particle size greater than 0.18mm) and zeolites (particle size greater than 0.5mm) were mixed in a mass fraction of 1:10 to 3:10, the bamboo charcoal-zeolite mixtures could not only remove cadmium from groundwater effectively, but also had good permeability and shear strength. The adsorption capacity of the bamboo charcoal-zeolite mixtures for cadmium increased with the growing bamboo charcoal ratio and decreasing particle size. The penetration and depletion time of the PRB column decreased with increasing groundwater flowing rate and column concentration. The removal reactions of cadmium by bamboo charcoal-zeolite mixtures mainly included complexation, chelation, and ion-exchange. At a groundwater cadmium contaminated site with a thicker PRB and slower groundwater flowing rate, the effective operation time of the PRB was longer.
|
Received: 07 March 2024
|
|
|
|
|
[1] 2022年中国生态环境状况公报(摘录) [J]. 环境保护, 2023,51(Z2): 64-81. [2] 罗锦洪,郑丙辉,付青,等.基于人体健康风险的水污染事件遗传性致癌物安全浓度研究[J]. 环境科学, 2012,33(2):342-345. Luo J H, Zheng B H, Fu Q, et al. Safety concentration of genotoxic carcinogens in water pollution accident based on human health risk [J]. Environmental Science, 2012,33(2):342-345. [3] 段续川,李苹,黄勇,等.北京市密云区农业土壤重金属元素地球化学特征及生态风险评价[J]. 现代地质, 2018,32(1):95-104. Duan X C, Li P, Huang Y, et al. Geochemical characteristics and risk assessment of heavy metals in agricultural soils in miyun district of beijing [J]. Geoscience, 2018,32(1):95-104. [4] 易龙生,夏晋,米宏成,等.尾矿活化方法的研究进展综述[J]. 矿业科学学报, 2022,7(5):529-537. Yi L S, Xia J, Mi H C, et al. A review on the research progress of tailings activation methods [J]. Journal of Mining Science and Technology, 2022,7(5):529-537. [5] 钟秋娟,肖兴,汪凡,等.鄱阳湖滨湖区浅层地下水镉元素分布特征及成因分析[J]. 上海国土资源, 2017,38(2):46-48. Zhong Q J, Xiao X, Wang F, et al. Cadmium distribution characteristics and causes of shallow groundwater in lakeside area of Poyang Lake [J]. Shanghai Land & Resources, 2017,38(2):46-48. [6] Henderson A D, Demond A H. Long-term performance of zero-valent iron permeable reactive barriers: a critical review [J]. Environmental Engineering Science, 2007,24(4):401-423. [7] Song J, Huang G, Han D, et al. A review of reactive media within permeable reactive barriers for the removal of heavy metal (loid) s in groundwater: Current status and future prospects [J]. Journal of Cleaner Production, 2021,319:128644. [8] Zong Y, Xiao Q, Lu S. Biochar derived from cadmium-contaminated rice straw at various pyrolysis temperatures: Cadmium immobilization mechanisms and environmental implication [J]. Bioresource Technology, 2021,321:124459. [9] Kumar N, Millot R, Battaglia-Brunet F, et al. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations [J]. Environmental Science and Pollution Research, 2016,23:5960-5968. [10] 卢欣,李淼,唐翠梅,等.Fe~0-PRB去除Cr(Ⅵ)反应动力学及影响机制[J]. 环境科学, 2016,37(9):3473-3479. Lu X, Li M, Tang C M, et al.Reaction kinetics and impacting mechanism of Cr(Ⅵ) Removal in Fe0-PRB Systems [J]. Environmental Science, 2016,37(9):3473-3479. [11] Arif M, Liu G, Yousaf B, et al. Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-A review [J]. Journal of Cleaner Production, 2021,310:127548. [12] 程钰莹,王嘉铭,王平,等.不同植物基生物炭对NH_4~+及Cd(Ⅱ)的吸附特性[J]. 中南林业科技大学学报, 2022,42(3):180-192. Cheng Y Y, Wang J M, Wang P, et al. Adsorption characteristics of NH4+ and Cd(Ⅱ) by different plant-based biochars [J]. Journal of Central South University of Forestry & Technology, 2022,42(3):180- 192. [13] 陈仲如,张澄博,李洪艺,等.可渗透反应墙的结构与设计研究[J]. 安全与环境学报, 2012,12(4):56-61. Chen Z R, Zhang C B, Li H Y, et al. On the structure and design of permeable reactive barrier [J]. Journal of Safety and Environment, 2012,12(4):56-61. [14] Zhang Y, Cao B, Yin H, et al. Application of zeolites in permeable reactive barriers (PRBs) for in-situ groundwater remediation: A critical review [J]. Chemosphere, 2022:136290. [15] 刘泽,李丽,邵宁宁,等.钢渣-粉煤灰水热合成方沸石及其性能表征[J]. 矿业科学学报, 2018,3(5):508-514. Liu Z, Li L, Shao N N, et al. Hydrothermal synthesis of analcime from steel slag-fly ash and its performance characterization [J]. Journal of Mining Science and Technology, 2018,3(5):508-514. [16] 吕瑞阳.天然沸石对液相中重金属的吸附性能研究[D]. 镇江:江苏科技大学, 2018. LV R. Study of adsorption properties of natural zeolite on heavymetals in liquid phase [D]. Zhenjiang: Jiangsu University of Science and Technology, 2018. [17] 林达红,徐文炘,张静,等.可渗透反应墙对重金属离子Pb~(2+)、Cd~(2+)吸附效果的试验研究[J]. 矿产与地质, 2016,30(1):132-134. Lin D H, Xu W X, Zhang J, et al. An experimental study on the absorption effect of permeable reactive barrier on heavy metal ions Pb2+ and Cd2+ [J]. Mineral Resources and Geology, 2016,30(1):132- 134. [18] Zhang Y, Wang F, Cao B, et al. Simultaneous removal of Pb and MTBE by mixed zeolites in fixed-bed column tests [J]. Journal of Environmental Sciences, 2022,122:41-49. [19] 杨茸茸,周军,吴雷,等.可渗透反应墙技术中反应介质的研究进展[J]. 中国环境科学, 2021,41(10):4579-4587. Yang R R, Zhou J, Wu L, et al. Research progress of reaction mediums in permeable reaction barrier technology [J]. China Environmental Science, 2021,41(10):4579-4587. [20] Nardo A D, Bortone I, Natale M D, et al. A heuristic procedure to optimize the design of a permeable reactive barrier for in situ groundwater remediation [J]. Adsorption Science & Technology, 2014, 32(2/3):125-140. [21] 吕永高,蔡五田,杨骊,等.中试尺度下可渗透反应墙位置优化模拟——以铬污染地下水场地为例[J]. 水文地质工程地质, 2020, 47(5):189-195. Lv Y G, Ca W T, Yang L, et al. A numerical simulation study of the position optimization of a pilot-scale permeable reactive barrier:a case study of the hexavalent chromium contaminated site [J]. Hydrogeology & Engineering Geology, 2020,47(5):189-195. [22] 罗兴申,郑凯旋,许芳铭,等.数值模拟减压集流式可渗透反应墙技术修复地下水[J]. 中国环境科学, 2021,41(12):5728-5735. Luo X S, Zheng K X, Xu F M, et al. Numerical simulation for remediation of polluted ground water by a novel convergent flow permeable reactive barrier [J]. China Environmental Science, 2021,41(12):5728-5735. [23] 钱程.PRB修复地下水中铀污染物的模拟试验研究[D]. 东华理工大学, 2019. Qian C. Simulation experimental research on repairing uranium contamination in groundwater by prb [D]. East China University of Technology, 2019. [24] 谭勇,梁婕,曾光明,等.基于数值模拟和响应面法的PRB设计影响研究[J]. 环境工程学报, 2016,10(2):655-661. Tan Y, Liang J, Zeng G M, et al. Effects of PRB design based on numerical simulation and response surface methodology [J]. Chinese Journal of Environmental Engineering, 2016,10(2):655-661. [25] Rad P R, Fazlali A. Optimization of permeable reactive barrier dimensions and location in groundwater remediation contaminated by landfill pollution [J]. Journal of Water Process Engineering, 2020,35: 101196. [26] Santonastaso G F, Erto A, Bortone I, et al. Experimental and simulation study of the restoration of a thallium (I)-contaminated aquifer by Permeable Adsorptive Barriers (PABs) [J]. Science of the Total Environment, 2018,630:62-71. [27] Masood Z B, Ali Z T A. Numerical modeling of two-dimensional simulation of groundwater protection from lead using different sorbents in permeable barriers [J]. Environmental Engineering Research, 2020,25(4):605-613. [28] Zhang Y, Cao B, Yin H, et al. Application of zeolites in permeable reactive barriers (PRBs) for in-situ groundwater remediation: A critical review [J]. Chemosphere, 2022,308:136290. [29] Gholizadeh M, Hu X. Removal of heavy metals from soil with biochar composite: A critical review of the mechanism [J]. Journal of Environmental Chemical Engineering, 2021,9(5):105830. [30] 李军,朱新华.氟羟基磷灰石的制备及对重金属离子吸附研究[J]. 环境科学与技术, 2017,40(S2):24-27. Li J, Zhu X H. Preparation of flour-hydroxyapatite and applications in the removal of metal ions from aqueous solution [J]. Environmental Science & Technology, 2017,40(S2):24-27. [31] 范明霞,童仕唐.活性炭孔隙结构对重金属离子吸附性能的影响[J]. 功能材料, 2016,47(1):1012-1016. Fan M X, Tong S T. Effect of pore structure of activated carbon on heavy metal ions adsorption performance [J]. Journal of Functional Materials, 2016,47(1):1012-1016. [32] 袁宁辉,余丽梅,李春彤,等.一种膨润土的表征及其对重金属离子吸附研究[J]. 广州化工, 2023,51(2):92-94,129. Yuan N H, Yu L M, Li C T, et al. Characterization of a bentonite and its adsorption of heavy metal ions [J]. Guangzhou Chemical Industry, 2023,51(2):92-94,129. [33] Park J H, Ok Y S, Kim S H, et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions [J]. Chemosphere, 2016,142:77-83. [34] 刘建勋,刘根起,尹德忠,等.花生壳生物炭吸附剂的制备及性能研究[J]. 广东化工, 2022,49(6):23-25. Liu J X, Liu G Q, Yin D Z, et al. Preparation and properties of peanut shell biochar adsorbent [J]. Guangdong Chemical Industry, 2022, 49(6):23-25. [35] Kumarasinghe, Kawamoto, Saito, et al. Evaluation of applicability of filling materials in permeable reactive barrier (PRB) system to remediate groundwater contaminated with Cd and Pb at open solid waste dump sites [J]. Process Safety and Environmental Protection, 2018,120:118-27. [36] 江杰,王树飞,苏建,等.固废基PRB复合颗粒填料对Cd2+的吸附特性及净化机制[J]. 中国有色金属学报, 2024,34(6):2112-2126. Jiang J, Wang S F, Su J, et al. Adsorption characteristics and purification mechanism of solid waste based PRB composite particle fillers on Cd2+ [J]. The Chinese Journal of Nonferrous Metals, 2024, 34(6):2112-2126. [37] 胡美艳,张翔凌,姬筠森,等.两种碳酸系Fe-LDHs负载改性沸石对Cd(Ⅱ)吸附特性对比研究[J]. 环境科学研究, 2021,34(11):2655- 2664. Hu M Y, Zhang X L, Ji J S, et al. Comparison of adsorption mechanisms of modified zeolite coated with two different Fe- CO3-layered double hydroxides for Cd(Ⅱ) removtal [J]. Research of Environmental Sciences, 2021,34(11):2655-2664. [38] Hadi M, Samarghandi M R, Mckay H. Simplified fixed bed design models for the adsorption of acid dyes on novel pine cone derived activated carbon [J]. Water, Air and Soil Pollution, 2011,218(1-4): 197-212. [39] Wang Z, Kang S B, Won S W. Selective adsorption of palladium (II) from aqueous solution using epichlorohydrin crosslinked polyethylenimine-chitin adsorbent: Batch and column studies [J]. Journal of Environmental Chemical Engineering, 2021,9(2):105058. [40] Gao J, Zhai Y, Huang Z, et al. Remediation of Cr (VI)/Cd (ІІ)- contaminated groundwater with simulated permeable reaction barriers filled with composite of sodium dodecyl benzene sulfonate-modified maifanite and anhydride-modified Fe@ SiO2@ polyethyleneimine: Environmental factors and effectiveness [J]. Adsorption Science & Technology, 2021,2021:4998706. [41] Faisal A A H, Ahmed D N, Rezakazemi M, et al. Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline [J]. Journal of Environmental Chemical Engineering, 2021,9(3):105194. [42] 黄怡.小麦秸秆生物炭对土壤改良效应的研究[D]. 咸阳:西北农林科技大学, 2022. Huang Y. Study on the effect of wheat straw biochar on soilimprovement [D]. Xianyang: Northwest A&F University, 2022. [43] Xiao M, Hu J. Cellulose/chitosan composites prepared in ethylene diamine/potassium thiocyanate for adsorption of heavy metal ions [J]. Cellulose (London, England), 2017,24(6):2545-2557. [44] Guiza S. Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel [J]. Ecological Engineering, 2017,99: 134-140. [45] 刘晓凤.贝壳粉—花生壳生物炭复合PRB介质修复水中重金属污染的研究[D]. 太原:太原理工大学, 2019. Liu X F. Study on remediation of heavy metal pollutedWater by oyster shell powder-peanut shell biochar PRB medium [D]. Taiyuan: Taiyuan University of Technology, 2019: [46] 王江南,孙晓雪,杨玲辉,等.壳聚糖、铁锰改性稻壳生物炭的表征及其Cd2+吸附性能研究[J]. 农业环境科学学报, 2023,42(9):1964- 1973. Wang J N, Sun X X, Yang L H, et al. Characterization of chitosan, Fe-Mn-modified rice husk biochar and its Cd2+ adsorption performance [J]. Journal of Agro-Environment Science, 2023,42(9): 1964-1973. [47] 赵宁,孙奇娜,黄海明,等.改性浒苔生物炭吸附水溶液体系中的Cd2+ [J]. 材料科学与工程学报, 2021,39(6):999-1006. Zhao N, Sun Q N, Huang H M, et al. Adsorption of Cd2+ by modified enteromorpha hupensis biochar in aqueous solution [J]. Journal of Materials Science and Engineering, 2021,39(6):999-1006. [48] Chen Y, Li M, Li Y, et al. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: adsorption behavior and mechanisms [J]. Bioresource Technology, 2021,321:124413. [49] Wu J, Wang T, Wang J, et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity [J]. Science of the Total Environment, 2021,754:142150. [50] Teng D, Zhang B, Xu G, et al. Efficient removal of Cd (II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms [J]. Environmental Pollution, 2020,265: 115001. [51] Pei Y, Mo S, Xie Q, et al. Stellerite-seeded facile synthesis of zeolite X with excellent aqueous Cd2+ and Ni2+ adsorption performance [J]. Chinese Journal of Chemical Engineering, 2022,51:61-74. [52] 龙林丽.矸石基沸石修饰材料制备及其对水中镉的吸附性能研究[D]. 淮南:安徽理工大学, 2023. Long L L. Study on the preparation of gangue-based zeolite modifiedmaterials and their adsorption properties on cadmium inwater [D]. Huainan: Anhui University of Science and Technology, 2023. [53] 刘正涛,郁红艳,邹路易,等.高效去除Cd~(2+)介孔硅酸钙的制备优化及表征[J]. 环境科学学报, 2020,40(3):986-994. Liu Z T, Yu H Y, Zou L Y, et al. Preparation optimization and characterization of highly efficient removal of Cd2+ mesoporous calcium silicate [J]. Acta Scientiae Circumstantiae, 2020,40(3):986- 994. [54] Cui X, Hao H, Zhang C, et al. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars [J]. Science of the Total Environment, 2016,539:566-575. [55] 范春辉,马宏瑞,花莉,等.FTIR和XPS对沸石合成特性及Cr(Ⅲ)去除机制的谱学表征[J]. 光谱学与光谱分析, 2012,32(2):324-329. Fan C H, Ma H R, Hua L, et al. FTIR and XPS analysis of characteristics of synthesized zeolite and removal mechanisms for Cr (Ⅲ) [J]. Spectroscopy and Spectral Analysis, 2012,32(2):324-329. |
|
|
|