|
|
Enhancement of high concentration anaerobic fermentation of cow dung and reduction of antibiotic resistance genes by Nano-Fe3O4 |
XI Yan-hua1, WANG Xin-zhi1, LI Xu1, WEI Shuai-qiang1,2, SUN Li-bo1,2, LYU Ya-tian1,3, CHENG Hui-cai1 |
1. Biology Institute, Hebei Academy of Sciences, Shijiazhuang 050081, China; 2. College of Landscape and Ecology, Hebei University of Engineering, Handan 056038, China; 3. School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China |
|
|
Abstract In order to improve the biogas production performance of high-concentration anaerobic fermentation of cow manure, the enhancement effect of different concentrations of nano iron trioxide (Nano-Fe3O4) on substrate hydrolysis and biogas production efficiency was tested, and the influence on microbial community structure and antibiotic resistance genes (ARGs) in the fermentation system were further explored. The results showed that adding 500mg/L of Nano-Fe3O4 can improve the hydrolysis degree of high concentration anaerobic fermentation substrates in cow manure, enhance system stability, and increase biogas production by 12.36%. Compared with the control, the abundance of Firmicutes and Fibrobacters in the fermentation system significantly increased by 37.39% and 75.86%, respectively. At the genus level, especially the abundance of Clostridium and Ruminococcus was 3.50 times and 8.69 times higher than that before. Methanosarcina was dominant among methanogens,with an abundance of 2.55%, a significant increase of 27.50% over the control. In addition, the abundance of potential pathogenic bacteria Treponema and Acinetobacter was significantly decreased by 72.14% and 93.69%, respectively. The reduction rate of tetracyclines (tetA,tetG,tetH,tetJ) and aminoglycosides (aph(3), aph(6)) in ARGs was 100%; The average reduction rate of sulfonamide class (sul1, sul2) was 74.41%~96.55%. Research has shown that adding an appropriate amount of Nano-Fe3O4 had multiple promoting effects on stabilizing the fermentation system, improving microbial activity, increasing biogas production, and reducing antibiotic resistance genes, etc. The research results can provide relevant theoretical guidance and practical basis for the use of conductive exogenous regulatory additives such as Nano-Fe3O4 in livestock and poultry manure biogas projects.
|
Received: 22 March 2024
|
|
|
|
|
[1] Li Y, Zhao J, Krooneman J, et al. Strategies to boost anaerobic digestion performance of cow manure: laboratory achievements and their full-scale application potential [J]. Science of the Total Environment, 2021,755:142940. [2] 李纤慧,李建政,张成成,等.畜禽粪便中抗生素抗性基因的分布特征及消减技术研究进展 [J]. 微生物学报, 2022,62(12):4740-4755. Li X H, Li J Z, Zhang C C, et al. Distribution characteristics of antibiotic resistance genes in livestock manure and the reduction techniques: a review [J]. Acta Microbiologica Sinica, 2022,62(12): 4740-4755. [3] Zhang Q P, Xu J F, Wang X J, et al. Changes and distributions of antibiotic resistance genes in liquid and solid fractions in mesophilic and thermophilic anaerobic digestion of dairy manure [J]. Bioresource Technology, 2021,320(Pt A):124372. [4] Farghali M, Ahmed M M, Kotb S, et al. Steady state of semi-continuous anaerobic digestion of cattle manure under the stress of adding iron and titanium oxide nanoparticles [J]. Journal of Material Cycles and Waste Management, 2021,23:1930-1937. [5] 尹若愚,李乃玉,全向春,等.负载纳米零价铁及Fe3O4颗粒对厌氧颗粒污泥长期运行性能及微生物群落结构影响 [J]. 环境科学学报, 2023,43(11):24-32. Yin R Y, Li N Y, Quan X C, et al. Effects of zero valent iron and ferriferrous oxide loading on methanogenesis performance of anaerobic granular sludge and microbial community under a long-term operation [J]. Acta Scientiae Circumstantiae, 2023,43(11):24-32. [6] 冉薛伶.纳米四氧化三铁对厌氧发酵特性及四环素类抗生素降解的影响 [D]. 杨凌:西北农林科技大学, 2020. Ran X L.Effects of Fe3O4 NPs on Anaerobic Digestion and Antibiotic Content in the Mesophilic and Thermophilic Digestion [D]. Yangling: Northwest A & F University, 2020. [7] Farghali M, Andriamanohiarisoamanana F J, Ahmed M M, et al. Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: hydrogen sulfide mitigation, process stability, and prospective challenges [J]. Journal of Environmental Management, 2019,240:160-167. [8] Kolaly E W,Saad A,Wang Y, et al. Production of biogas from various types of spent mushroom substrate under different growth conditions [J]. Bioresource Technology Reports, 2024,28:101964-101964. [9] Wang D, Han Y, Han H, et al. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite [J]. Bioresource Technology, 2018,257:147-56. [10] 高铭雪.不同导电性添加剂用量对厌氧发酵特性的影响及微生物作用机制的研究 [D]. 杨凌:西北农林科技大学, 2022. Gao M X. Study on the effect of different conductive additive dosages on the anaerobic digestion characteristics and microbial action mechanism [D]. Yangling: Northwest A & F University, 2022. [11] 牛明芬,谢田宾,王颜红,等.畜禽粪肥中抗生素残留对土壤微生物及抗性基因的影响分析研究进展 [J]. 环境污染与防治, 2024,46(2): 252-261. Niu M F, Xie T B, Wang Y H, et al. Research progress on the impact of antibiotic residues in livestock manure on soilmicroorganisms and resistance genes [J]. Environmental Pollution & Control, 2024,46(2): 252-261. [12] 马凯丽,王 威,刘雨晴,等.Fe3O4对含盐废水厌氧处理系统的影响 [J]. 中国环境科学, 2022,42(11):5128-5135. Ma K L, WangG W, LiuU Y Q, et al. Influence of Fe3O4 on the anaerobic treatment system of saline wastewater [J]. China Environmental Science, 2022,42 (11):5128-5135. [13] 向银萍.纳米零价铁和纳米四氧化三铁强化污泥厌氧消化产气和抗性基因削减的研究 [D]. 长沙:湖南大学, 2020. Xiang Y P. Influence of Nanoscale Zero Valent lron and Magnetite Nanoparticles onSludge Anaerobic Digestion Performance and Resistance Genes Reduction [D]. Changsha: Hunan University, 2020. [14] Zhang J, Lu Y. Conductive Fe3O4 Nanoparticles Accelerate Syntrophic Methane Production from Butyrate Oxidation in Two Different Lake Sediments [J]. Frontiers in Microbiology, 2016,7:1316. [15] Alessi M A,Bird M S,Oates C N, et al. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies [J]. Biotechnology for Biofuels, 2018,11(1):1-16. [16] Chen S, Wang Y F, Cheng H C, et al. Identification of Propionate-Degrading Microbial Populations in Methanogenic Processes for Waste Treatment: Methanosaeta and Methanoculleus [J]. Environmental Engineering Science, Mary Ann Liebert, Inc., publishers, 2022,39(3):202-211. [17] Linda D, Julia M, Felix G, et al. Methanofollis propanolicus sp. nov., a novel archaeal isolate from a Costa Rican oil well that uses propanol for methane production [J]. Archives of Microbiology, 2022,204(9): 554. [18] Min G C, Woo Y L, Hanna C, et al. Humibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity isolated from activated sludge [J]. International Journal of Systematic and Evolutionary Microbiology, Microbiology Society, 2022,72(7):005442. [19] QingY L, Kaihong B, Yumin K, et al. Variation in Streptomycin Resistance Mechanisms in Clavibacter michiganensis [J]. Phytopathology®, Scientific Societies, 2019,109(11):1849-1858. [20] 耿 涛,赵立欣,姚宗路,等.水热炭强化秸秆厌氧发酵产甲烷效能及作用机制 [J]. 中国环境科学, 2024,44(8):4415-4424. Geng T, Zhao L X, Yao Z L, et al. Effect and the mechanism of hydrochars on methane production of cornstalk digestion [J/OL]. China Environmental Science, 2024,44(8):4415-4424. [21] 马心阳,蒋心远,贺金岭,等.离子液体强化剩余污泥厌氧发酵产酸效能研究 [J]. 中国环境科学, 2024,44(5):2562-2567. Ma X Y, Jiang X Y, He J L, et al. Enhanced bioproduction of short-chain fatty acids by ionic liquid during anaerobic digestion of waste activated sludge [J]. China Environmental Science, 2024,44(5): 2562-2567. [22] 谢欣卓.四氧化三铁负载纳米零价铁类Fenton法处理水中的磺胺类抗生素 [D]. 兰州:兰州交通大学, 2022. Xie X Z.Treatment of sulfonamide antibiotics in water by Fenton-like process using ferriferrous oxide supported nano zero-valent iron [D]. Lanzhou: Lanzhou Jiaotong University, 2022. [23] 陈雨佳.Fe3O4介导提升厌氧发酵定向生产奇/偶数碳VFAs效能的研究 [D]. 广州:广州大学, 2022. Chen Y J. Study on Fe304 mediated enhancementof the efficiency of directional production ofodd /even carbon VFAs by anaerobic fermentation [D]. Guangzhou: Guangzhou University, 2022. [24] 李梦桐.生物炭对富铜猪粪连续高温堆肥腐殖化及抗生素抗性基因的影响 [D]. 西安:西安建筑科技大学, 2023. Li M T.Effects of biochar on humification and antibiotic resistance genes in continuous high temperature composting of copper rich pig manure [D]. Xi’an: Xi’an University of Architecture and Technology, 2023. [25] 唐山青,谢彦培,刘智峰,等.温度转换对厌氧消化系统连续运行及微生物群落的影响 [J]. 中国环境科学, 2024,44(8):4303-4313. Tang S Q, Xie Y P, Liu Z F, et al. Effect of temperature conversion on continuous operation and microbial community of anaerobic digestion system [J]. China Environmental Science, 4303-4313. [26] 陈广银,郑嘉伟,曹海南,等.鸡粪与麦秸混合厌氧发酵产沼气特性 [J]. 中国环境科学, 2023,43(5):2373-2380. Chen G Y, Zheng J W, CaoO H N, et al. Biogas production characteristics of anaerobic fermentation by mixing chicken manure with crop straw [J]. China Environmental Science, 2023,43(5):2373-2380. [27] 王 攀,杨鑫玉,郑 义,等.厨余垃圾厌氧发酵失稳调控及微生物群落分析 [J]. 中国环境科学, 2022,42(4):1770-1779. Wang P, Yang X Y, Zheng Y, et al. Regulation of acidified dry anaerobic digestion of kitchen waste and microbial community analysis [J]. China Environmental Science, 2022,42(4):1770-1779. [28] 岳 霞,陈德珍,安 青,等.生物炭对污泥热解液与牛粪共厌氧发酵的影响 [J]. 中国环境科学, 2022,42(3):1267-1277. Yue X, Chen D Z, An Q, et al. Biochars enhancing anaerobic co-digestion of sewage sludge pyrolysis liquid and cow dung: influences of inorganics in biochar raw materials [J]. China Environmental Science, 2022,42(3):1267-1277. [29] 常 城,明磊强,牟云飞,等.厨余垃圾与污泥厌氧发酵产甲烷的协同作用 [J]. 中国环境科学, 2022,42(3):1259-1266. ChangG C, Ming L Q, Mu Y F, et al. Synergistic effect of kitchen waste and sludge anaerobic fermentation for methane production [J]. China Environmental Science, 2022,42(3):1259-1266. [30] Chen S J, Tao Z T, Yao F B, et al. Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron:insights in direct interspecies electron transfer mechanism [J]. Bioresource Technology, 2020,316:123901. [31] Zhang G M, Wang Y C. Effects of Fe-Mn-modified biochar addition on anaerobic digestion of sewage sludge:biomethane production,heavy metal speciation and performance stability [J]. Bioresource Technology, 2020,313:123695. [32] 苏 瑜.氨基酸修饰四氧化三铁促进厌氧消化过程中丙酸转化为甲烷的研究 [D]. 上海:同济大学, 2022. Su Y. Enhancement of propionate bioconversion to methane by amino acids modified Fe3O4 during anaerobic digestion [D]. Shanghai: TongJi University, 2022. [33] 王欣姿,王 攀,杨鑫玉,等.生物炭负载纳米零价铁对厨余垃圾厌氧发酵性能的影响 [J]. 环境工程, 2023,41(8):154-161. Wang X Z, Wang P, Yang X Y, et al. Effect of biochar-ZVI on performance of food waste anaerobic digestion [J]. Environmental Engineering, 2023,41(8):154-161. [34] 叶人恺,经 雪,耿子韬,等.复合铁添加物对混合有机固废厌氧产氢的影响 [J]. 环境工程学报, 2021,15(12):4001-4008. Ye R K, Jing X, Geng Z T,,et al.Effects of iron filings additives on anaerobic hydrogen production from mixed organic solid wastes [J]. Chinese Journal of Environmental Engineering, 2021,15(12):4001-4008. |
|
|
|