|
|
Quantitative monitoring of oil spill thickness using multiscale continuous wavelet-based shore-based hyperspectral analysis |
DONG Yang1,2, CUI Hou-xin2, DENG Jia-chun2, MA Jun-jie2, QIN Hai-xiao1 |
1. Institute of Disaster Prevention, Sanhe 065201, China; 2. Hebei Sailhero Environmental Protection High-tech Co., Ltd, Shijiazhuang 050035, China |
|
|
Abstract Focusing on the monitoring of 0# diesel oil film thickness, the primary objective is to meticulously analyze the spectral curve characteristics of different thickness oil films. Secondly, to delve deeper into the intricate relationship between spectral data and oil film thickness, the Morlet multi-scale continuous wavelet transform (CWT) technique is introduced. This enables the precise identification of spectral bands that are highly sensitive to oil film thickness, effectively addressing the challenge posed by the high dimensionality and complexity of hyperspectral data. Consequently, this approach significantly enhances the accuracy of thickness regression predictions. At the same time, the CatBoost regression model, with its efficient computing performance, strong feature capture ability, and excellent generalization ability, efficiently integrates these sensitive features and constructs a precise regression prediction model of the oil film thickness, accelerating the real-time monitoring speed of oil spill events, thereby achieving the immediate capture of changes in the thickness of the oil film and ensuring the accuracy of the prediction results, providing a solid scientific basis and technical support for the rapid initiation of oil spill emergency responses and the formulation of precise prevention and control strategies. The results show that the multi-scale continuous wavelet transform technology plays a key role in this study. It can effectively extract the sensitive bands highly related to the thickness of the oil film from the massive hyperspectral data, thereby significantly improving the accuracy and efficiency of oil spill thickness monitoring. The CatBoost regression model can better capture the change category characteristic data of the oil film thickness, further enhancing the generalization ability and robustness of the model. The diesel oil film thickness prediction model established by the CatBoost regression model shows extremely high accuracy, with R2=0.90, RMSE=95.14μm,δ=30.126% on the validation set.
|
Received: 20 May 2024
|
|
|
|
|
[1] 赵玉玲,杨楠楠,张海霞,等.基于高光谱的邯郸市土壤重金属统计估算模型研究 [J]. 生态环境学报, 2020,29(4):819-826. Zhao Y L, Yang N N, Zhang H X, et al. Study on the statistical estimation model of soil heavy metals in Handan city based on hyper-spectral [J]. Ecology and Environment Sciences, 2020,29(4): 819-826. [2] 刘 聪,杨可明,夏 天,等.铜胁迫下玉米叶片光谱奇异性分析及污染评估 [J]. 中国环境科学, 2017,37(10):3952-3961. Liu C, Yang K M, Xia T, et al. Analysis on spectral singularity and pollution assessment of corn leaves under copper stress [J]. China Environmental Science, 2017,37(10):3952-3961. [3] 张艺伟,郭焱培,唐 荣,等.高光谱遥感在植物多样性研究中的应用进展与趋势 [J]. 遥感学报, 2023,27(11):2467-2483. Zhang Y W, Guo Y P, Tang R, et al. Progress and trends of application of hyperspectral remote sensing in plant diversity research [J]. National Remote Sensing Bulletin, 2023,27(11):2467-2483. [4] 任广波,过 杰,马 毅,等.海面溢油无人机高光谱遥感检测与厚度估算方法 [J]. 海洋学报, 2019,41(5):146-158. Ren G B, Guo J, Ma Y, et al. Oil spill detection and slick thickness measurement via UAV hyperspectral imaging [J]. Acta Oceanologica Sinica, 2019,41(5):146-158. [5] Hu C, Frank E. Müller-Karger, et al. MODIS detects oil spills in lake Maracaibo Venezuela [J]. Eos Transactions American Geophysical Union, 2003,84(33):313-319. [6] 孙乐成,周 青,王 娟.海洋溢油遥感探测技术现状及预见 [J]. 海洋开发与管理, 2020,(3):49-53. Sun L C, Zhou Q, Wang J. The present situation and forecast of marine oil spill detection technology by using remote sensing [J]. Ocean Development and Management, 2020,(3):49-53. [7] Khanna S, Santos M J, Koltunov A, et al. Marsh loss due to cumulative impacts of hurricane Isaac and the deepwater horizon oil spill in Louisiana [J]. Remote Sensing, 2017,9(2):169-172. [8] 刘旭拢,邓孺孺,秦 雁,等.水面浮油光谱测量及光谱特征分析 [J]. 海洋科学, 2016,40(10):63-70. Liu X L, Deng R R, Qin Y, et al. Spectral measurement and characteristic analysis of an oil film floating above water [J]. Marine Sciences, 2016,40(10):63-70. [9] Svejkovsky J, Muskat J, Mullin J. Mapping oil spill thickness with a protable multispectral aerial imager [J]. International Oil Spill Conference Proceedings, 2008,2008(1):131-136. [10] Palmer D, Borstad G A, Boxall S R. Airborne multispectral remote sensing of the January 1993Shetlands oil spill [Z]. 1994. [11] 孟令举.基于LIF和可视图像的海面不同类别区域溢油量评估研究 [D]. 秦皇岛:燕山大学, 2021.001350. Meng L J.Assessment of oil spills in different seaAreas based on LIF and visual images [D]. Qinhuangdao: Yanshan University, 2021, 001350. [12] Palmer D, Borstad G A, Boxall S R, et al. Airborne multispectral remote sensing of the January 1993 shetlands oil spill [J]. ERIM Conferences Ann Arbor, 1994:546-558. [13] 赵冬至,丛丕福.海面溢油的可见光波段地物光谱特征研究 [J]. 遥感技术与应用, 2000,15(3):160-164. Zhao D Z, Cong P F. The research of visual light wave-band feature spectrum of sea-surface oil spill [J]. National Marine Environment Monitoring Center, 2000,15(3):160-164. [14] Hongjun S. Dimensionality reduction for hyperspectral remote sensing: Advances, challenges, and prospects [J]. National Remote Sensing Bulletin, 2022,26(8):1504-1529. [15] Laure Roupioz, Françoise Viallefont-Robinet, Véronique Miegebielle. Oil slick volume estimation from combined use of airborne hyperspectral and pool experiment data [J]. International Journal of Remote Sensing, 2022,43(3):997-1014. [16] Fernandez D, Gonzalez C, Mozos D, et al. FPGA implementation of the principal component analysis algorithm for dimensionality reduction of hyperspectral images [J]. Journal of Real-Time Image Processing, 2019,16:1395-1406. [17] 吴继乐.基于高光谱数据的海面溢油检测研究 [D]. 西安:西安电子科技大学, 2015. Wu L. Research on detection of oil spill at sea based on hyperspectral imagery [D]. Xian: Xidian University, 2015. [18] 胡 涛.基于高光谱遥感的海面溢油特征提取研究 [D]. 长春:中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2023. Hu T. Research on feature extraction method of sea surface oil spill based on hyperspectral remote sensing technology [D]. Changchun: Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2023. [19] 李 颖,刘丙新,李宝玉,等.基于小波变换的油膜光谱特征分析 [J]. 光谱学与光谱分析, 2012,32(7):1923-1927. Li Y, Liu B X, Li B Y, et al. Analysis of spectral characteristics of oil film on water based on wavelet transform [J]. Environmental Information Institute, Dalian Maritime University, 2012,32(7):1923-1927. [20] 薛庆生,田中天,郝锡杰,等.基于小波分析的快照式高光谱海面溢油厚度分析 [J]. 光学学报, 2020,40(17):201-207. Xue Q S, Tian Z T, Hao X J, et al. Snapshot hyperspectral analysis of spilled oil thickness based on wavelet analysis [J]. Acta Optica Sinica, 2020,40(17):201-207. [21] 陈点点,陈芸芝,冯险峰,等.基于超参数优化CatBoost算法的 河流悬浮物浓度遥感反演 [I]. 地球信息科学学报, 2022,24(4):780-791. Chen D D, Chen Y Z, Feng X F, et al. Retrieving suspended matter concentration in rivers based on hyperparameter optimized Cat Boost algorithm [J]. Journal of Geo-information Science, 2022,24(4):780-791. [22] Asier U, Ander C, Ana A. Optimizing wheat yield prediction integrating data from sentinel-1and sentinel-2with CatBoost algorithm [J]. Remote Sensing, 2023,15(6):1640.DOI:10.3390/rs15061640. [23] 陈勤思,胡 松.中国近海沿岸海洋溢油事故研究 [J]. 海洋开发与管理, 2020,(12):49-53. Chen Q S, Hu S. Marine oil spill accidents in China's coastal zone [J]. Ocean Development and Management, 2020,(12):49-53. [24] 刘丙新,李 颖,张至达,等.不同厚度海上油膜高光谱遥感波段敏感性研究 [J]. 东北师大学报(自然科学版), 2015,47(4):156-160. Liu B X., Li Y., Zhang Z D, et al. Study on the sensitivity of hyper-spectral imagery to detect oil film with different thickness [J]. Journal of Northeast Normal University (Natural Science Edition), 2015,47(4):156-160. [25] 于 雷,洪永胜,周 勇,等.连续小波变换高光谱数据的土壤有机质含量反演模型构建 [J]. 光谱学与光谱分析, 2016,36(5):1428-1433. Yu L, Hong Y S, Zhou Y, et al. Inversion of soil organic matter content using hyperspectral data based on continuous wavelet transformation [J]. Spectroscopy and Spectral Analysis, 2016,36(5):1428-1433. [26] Kaewkongka T, Au Y H J, Rakowski R. Continuous wavelet transform and neutral network for condition monitoring of roto-dynamic machinery [J]. IEEE Instrumentation and Measurement Technology Conference. Budapest, Hungary, May21-23, 2001.Anchorage, AK,USA,May21-23,2002:1962-1966. [27] 郭 斌,白昊睿,张 波,等.基于RF和连续小波变换的露天煤矿土壤锌含量高光谱遥感反演 [J]. 农业工程学报, 2022,38(10):138-147. Guo B, Bai H R, Zhang B, et al. Inversion of soil zinc contents using hyperspectral remote sensing based on random forest and continuous wavelet transform in an opencast coal mine [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022,38(10):138-147. [28] 杨宝华,高 远,王梦玄,等.基于光谱-空间特征的黄茶多酚含量估算模型 [J]. 光谱学与光谱分析, 2021,41(3):936-942. Yang B H, Gao Y, Wang M X, et al. Estimation model of polyphenols content in yellow tea based on spectral-Spatial features [J]. Spectroscopy and Spectral Analysi, 2021,41(3):936-942. [29] 孙梦莲,余坤勇,张晓萍,等.基于机载激光雷达点云数据和Catboost算法的杉木单木蓄积量估测研究 [J]. 西南林业大学学报(自然科学), 2024,44(2):1-9. Sun M L, Yu K Y, Zhang X P, et al. Research on estimation of singlewood accumulation of fir based on airborne lidar pointcloud data and Catboost algorithm [J]. Journal of Southwest Forestry University (Natural Sciences), 2024,44(2):1-9. [30] 邱 壑.耕地土壤有机质与速效氮磷钾含量高光谱遥感反演研究 [D]. 福州:福建农林大学, 2017. Qiu H. Hyperspectral remote sensing inversion of organic matter, available nitrogen, phosphorus, and potassium contents in cropland soil [D]. Fuzhou:Fujian Agriculture and Forestry University, 2017. [31] 张永宁,丁 倩,高 超,等.油膜波谱特征分析与遥感监测溢油 [J]. 海洋环境科学, 2000,19(3):5-10. Zhang Y N, Ding Q, Gao C, et al. Analysis of oil film spectrum and monitoring oil spilled by remote sensing [J]. Marine Environmental Science, 2000,19(3):5-10. [32] 叶 舟,刘 力,魏传新,等.多种薄油膜光谱反射率特性外场测试方法及结果分析 [J]. 光谱学与光谱分, 2015,35(6):1695-1699. Ye Z, Liu L, Wei C X, et al. Experimental methods and result analysis of a variety of spectral reflectance properties of the thin oil film [J]. Spectroscopy and Spectral Analysis, 2015,35(6):1695-1699. [33] 李 庆.结合光学传输和光谱解混的高光谱油膜厚度估计 [D]. 大连:大连海事大学, 2023. Li Q. Hyperspectral oil film thickness estimation combining optical transmission model and spectral unmixing [D]. Dalian:Dalian Maritime University, 2023. [34] Büssow R. An algorithm for the continuous Morlet wavelet transform [J]. Mechanical Systems and Signal Processing, 2007,21(8):2970-2979. [35] 王延仓,张 兰,王 欢,等.连续小波变换定量反演土壤有机质含量 [J]. 光谱学与光谱分析, 2018,38(11):3521-3527. Wang Y C, Zhang L, Wang H, et al. Quantitative inversion of soil organic matter content based on continuous wavelet transform [J]. Spectroscopy and Spectral Analysis, 2018,38(11):3521-3527. [36] 顾崇寅,徐潇源,王梦圆,等.基于CatBoost算法的光伏阵列故障诊断方法 [J]. 电力系统自动化, 2023,47(2):105-114. Gu C Y, Xu X Y, Wang M Y, et al. CatBoost algorithm based fault diagnosis method for photovoltaic arrays [J]. Auto Mation of Electric Power Systems, 2023,47(2):105-114. [37] 彭寒梅,吴 行,胡 磊,等.基于CatBoost算法的配电网分区拓扑辨识 [J]. 电力自动化设备, 2024,44(5):95-102. Peng H M, Wu X, Hu L, et al. Partition topology identification of distribution network based on Catboost algorithm [J]. Electric Power Automation Equipment, 2024,44(5):95-102. |
|
|
|