|
|
Application of the mass spectrometry imaging technology in environmental field |
ZHANG Yu-lin1,2, ZHOU Yang-hao1,2, CHEN Zhong-li1,2, CHEN Rui-huang1,2, SHAO Ying1,2 |
1. College of Environment and Ecology, Chongqing University, Chongqing 400044, China; 2. Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing 400044, China |
|
|
Abstract Through literature collection, study and bibliometric analysis of Citespace literature, this paper summarizes the development history of mass spectrometry imaging (MSI) technology and its latest application status in the environmental field. Combined with the current research bottleneck in the environmental field, the development prospect of MSI is deeply discussed. MSI, as a new technology integrating high sensitivity mass spectrometry and high precision spatial resolution imaging, can directly collect and identify molecular information from the sample. In the field of environmental toxicology and monitoring, MSI, on one hand, can demonstrate the distribution, location and quantify the pollutants and their transformed products in environmental media or within biological tissues, cells and even sub-cells, and thus reveal the target of pollutant action. On the other hand, it can analyse the characteristics and mechanisms of pollutants' bioaccumulation, biotransformation and metabolic activation. In summary, the application of MSI in the environmental field has important scientific significance, providing a new perspective in the monitoring of water, air and soil pollution, particularly for in situ identification of pollutants and analysis of their toxic effects. Besides, it provides a scientific basis for the risk screening, assessment and control of pollutants.
|
Received: 10 April 2024
|
|
|
|
|
[1] He J, Luo Z, Huang L, et al. Ambient mass spectrometry imaging metabolomics method provides novel Insights into the action mechanism of drug candidates [J]. Analytical Chemistry, 2015,87(10): 5372-5379. [2] Fujimura Y, Miura D. MALDI mass spectrometry imaging for visualizing in situ metabolism of endogenous metabolites and dietary phytochemicals [J]. Metabolites, 2014,4(2):319-469. [3] Castaing R, Slodzian G. Premiers essais de microanalyse par emission ionique secondaire [J]. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 1962,255(16):1893-1895. [4] Yoshida T, Tanaka K, Ido Y, et al. Detection of high mass molecular ions by laser desorption time-of-flight mass spectrometry [J]. Journal of the Mass Spectrometry Society of Japan, 1988,36(2):59-69. [5] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000daltons [J]. Analytical Chemistry, 1988,60(20):2299-2301. [6] Caprioli R M, Farmer T B, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS [J]. Analytical Chemistry, 1997,69(23):4751-4760. [7] Takáts Z, Wiseman J M, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization [J]. Science, 2004,306(5695):471-473. [8] Buchberger A R, DeLaney K, Johnson J, et al. Mass spectrometry imaging: a review of emerging advancements and future insights [J]. Analytical Chemistry, 2018,90(1):240-265. [9] 黄 熹,刘会会,毛兰群,等.质谱成像在脑神经科学中的应用进展 [J]. 分析化学, 2019,47(10):1592-1600. Huang X, Liu H H, Mao L Q, et al. Progress of mass spectrometry imaging in neuroscience [J]. Chinese Journal of Analytical Chemistry, 2019,47(10):1592-1600. [10] Greer T, Sturm R, Li L. Mass spectrometry imaging for drugs and metabolites [J]. Journal of Proteomics, 2011,74(12):2617-2631. [11] 王晓群.代谢物质谱可视化分析研究 [D]. 合肥:中国科学技术大学, 2019. Wang X Q. Mass spectrometry imagine for metabolites [D]. Hefei: University of Science and Technology of China, 2019. [12] 李欣昕,吴 欢,王 晨,等.质谱成像技术及其在药学领域的应用 [J]. 中国药科大学学报, 2014,45(1):17-25. Li X X, Wu H, Wang C, et al. Mass spectrometry imaging and its application in pharmaceutical sciences [J]. Journal of China Pharmaceutical University, 2014,45(1):17-25. [13] Schwamborn K, Caprioli R M. MALDI imaging mass spectrometry-painting molecular pictures [J]. Molecular Oncology, 2010,4(6):529-538. [14] Chaurand P, Schwartz S A, Reyzer M L, et al. Imaging mass spectrometry: principles and potentials [J]. Toxicologic Pathology, 2005,33(1):92-101. [15] Seeley E H, Caprioli R M. 3D imaging by mass spectrometry: a new frontier [J]. Analytical Chemistry, 2012,84(5):2105-2110. [16] Hilvo M, Denkert C, Lehtinen L, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression [J]. Cancer Research, 2011, 71(9):3236-3245. [17] Vicari M, Mirzazadeh R, Nilsson A, et al. Spatial multimodal analysis of transcriptomes and metabolomes in tissues [J]. Nature Biotechnology, 2023,42(7):1046-1050. [18] 赵 超,蔡宗苇.基于质谱成像和组学分析的环境毒理研究 [J]. 化学进展, 2021,33(4):503-511. Zhao C, Cai Z W. Mass spectrometry imaging and omics for evironmental toxicology research [J]. Progress in Chemistry, 2021, 33(4):503-511. [19] Lagarrigue M, Lavigne R, Tabet E, et al. Localization and in situ absolute quantification of chlordecone in the mouse liver by MALDI imaging [J]. Analytical Chemistry, 2014,86(12):5775-5783. [20] Zhao C, Yong T, Zhang Y B, et al. Evaluation of the splenic injury following exposure of mice to bisphenol S: a mass spectrometry-based lipidomics and imaging analysis [J]. Environment International, 2020,135(2):1-6. [21] Bian Y, He M Y, Ling Y, et al. Tissue distribution study of perfluorooctanoic acid in exposed zebrafish using MALDI mass spectrometry imaging [J]. Environmental Pollution, 2022,293(1):1-9. [22] Li X, Li T, Wang Z, et al. Distribution of perfluorooctane sulfonate in mice and its effect on liver lipidomic [J]. Talanta, 2021,226(5):1-11. [23] Shi Q, Fang C, Zhang Z, et al. Visualization of the tissue distribution of fullerenols in zebrafish (Danio rerio) using imaging mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2020,412 (27):7649-7658. [24] Tang A P, Zhang X H, Li R F, et al. Spatiotemporal distribution, partitioning behavior and flux of per-and polyfluoroalkyl substances in surface water and sediment from Poyang Lake, China [J]. Chemosphere, 2022,295(5):1-11. [25] Huang Y X, Shang H L, Wang C, et al. Spatially resolved co-imaging of polyhalogenated xenobiotics and endogenous metabolites reveals xenobiotic-induced metabolic alterations [J]. Environmental Science & Technology, 2023,57(48):19330-19340. [26] Liu W J, Nie H X, Liang D P, et al. Phospholipid imaging of zebrafish exposed to fipronil using atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry [J]. Talanta, 2020,209(3):1-6. [27] Chen Y Y, Jiang L L, Zhang R, et al. Spatially revealed perfluorooctane sulfonate-induced nephrotoxicity in mouse kidney using atmospheric pressure MALDI mass spectrometry imaging [J]. Science of the Total Environment, 2022,838(Pt 3):1-7. [28] Zhang T Y, Liu Q, Wang W C, et al. Metallic fingerprints of carbon: label-free tracking and imaging of graphene in plants [J]. Analytical Chemistry, 2020,92(2):1948-1955. [29] Chen B, Lum J T, Huang Y, et al. Integration of sub-organ quantitative imaging LA-ICP-MS and fractionation reveals differences in translocation and transformation of CeO2 and Ce3+ in mice [J]. Analytica Chimica Acta, 2019,1082(9):18-29. [30] Stutts W L, Knuth M M, Ekelöf M, et al. Methods for cryosectioning and mass spectrometry imaging of whole-body zebrafish [J]. Journal of the American Society for Mass Spectrometry, 2020,31(4):768-772. [31] 程紫逸.基于脂质组学和质谱成像全氟辛酸暴露斑马鱼脂质代谢研究 [D]. 哈尔滨:哈尔滨工业大学, 2022. Chen Z Y. Analysis of lipid metabolism in zebrafish exposed to perfluorooctanoic acid based on lipidomics and mass spectrometry imaging. [D]. Harbin: Harbin Institute of Technology, 2022. [32] Zhao C, Xie P S, Yong T, et al. Airborne fine particulate matter induces cognitive and emotional disorders in offspring mice exposed during pregnancy [J]. Science Bulletin, 2021,66(6):578-591. [33] 李冬月,郑令娜,常盼盼,等.基于低分散激光剥蚀系统-电感耦合等离子体飞行时间质谱的快速元素成像 [J]. 中国无机分析化学, 2022,12(04):142-147. Li D Y, Zheng L N, Chang P P, et al. Fast elemental bio-imaging with low dispersion laser ablation system coupled to inductively coupled plasma time-of-flight mass spectrometry [J]. Chinese Journal of Inorganic Analytical Chemistry, 2022,12(4):142-147. [34] Ma L L, Yin Z B, Xie Q R, et al. Metabolomics and mass spectrometry imaging reveal the chronic toxicity of indoxacarb to adult zebrafish livers [J]. Journal of Hazardous Materials, 2023,453:1-12. [35] Zhao C, Xie P S, Yong T, et al. MALDI-MS imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol s-induced nephrotoxicity [J]. Analytical Chemistry, 2018,90(5):3196-3204. [36] 张传洲.基于脂质组学和质谱成像的微塑料对斑马鱼毒性研究 [D]. 哈尔滨:哈尔滨工业大学, 2022. Zhang C Z. Toxicity of microplastics to zebrafish based on lipidomics and mass spectrometry imaging [D]. Harbin: Harbin Institute of Technology, 2022. [37] 王楠楠.香水和土壤中邻苯二甲酸二乙酯的直接质谱分析研究 [D]. 南昌:东华理工大学, 2014. Wang N N. Ambient mass spectrometry for direct analysis of diethylphthalate in perfume and soil [D]. Nanchang: East China University of Technology, 2014. [38] Burzio C, Mohammadi A S, Malmberg P, et al. Chemical imaging of pharmaceuticals in biofilms for wastewater treatment using secondary ion mass spectrometry [J]. Environmental Science & Technology, 2023,57(19):7431-7441. [39] Villette C, Maurer L, Zumsteg J, et al. Mass spectrometry imaging for biosolids characterization to assess ecological or health risks before reuse [J]. Nature Communications, 2023,14(1):1-13. [40] Villette C, Maurer L, Wanko A, et al. Xenobiotics metabolization in leaves uncovered by mass spectrometry imaging [J]. Metabolomics, 2019,15(9):1-12. [41] Villette C, Maurer L, Delecolle J, et al. In situ localization of micropollutants and associated stress response in Populus nigra leaves [J]. Environment International, 2019,126(5):523-532. [42] Lebeau D, Leroy N, Doizi D, et al. Mass spectrometry -based imaging techniques for iodine-127 and iodine-129 detection and localization in the brown alga Laminaria digitata [J]. Journal of Environmental Radioactivity, 2021,231(5):1-5. [43] Vo P H N, Hamilton B R, Wepf R A, et al. Visualization of the distribution of PFOS and PFHxS in concrete by DESI MSI [J]. Environmental Science & Technology Letters, 2023,10(5):446-451. [44] Luo R X, Shen B H, Xiang P, et al. Determination of twenty herbicides in blood by ultrapressure liquid chromatography-tandem mass spectrometry [J]. Forensic Science International, 2021,327(8):1-11. [45] Bartels J L, Fernandez S R, Aweda T A, et al. Comparative uptake and biological distribution of [18F]-labeled C6 and C8 perfluorinated alkyl substances in pregnant mice via different routes of administration [J]. Environmental Science & Technology Letters, 2020,7(9):665-671. [46] Liu Z, Davis C, Cai W B, et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by raman spectroscopy [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(5): 1410-1415. [47] Meng Y F, Gao C H, Lu Q, et al. Single-cell mass spectrometry imaging of multiple drugs and nanomaterials at organelle level [J]. Acs Nano, 2021,15(8):13220-13229. [48] Gourlay C, Miege C, Garric J, et al. The use of spectrofluorimetry for monitoring the bioaccumulation and the biotransformation of polycyclic aromatic hydrocarbons in Daphnia magna [J]. Polycyclic Aromatic Compounds, 2002,22(34):501-516. [49] Wu C C, Huang L, Tang S H, et al. Enantioselective absorption and transformation of a novel chiral neonicotinoid [14C]-cycloxaprid in rats [J]. Environmental Pollution, 2016,213(6):770-775. [50] Grove K J, Hoque S, Rudewicz P J. Investigation of amodiaquine localization in liver lobules using matrix-assisted laser desorption/ionization imaging mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2019,33(3):252-258. [51] Perez C J, Tata A, de Campos M L, et al. Monitoring toxic ionic liquids in zebrafish (Danio rerio) with desorption electrospray ionization mass spectrometry imaging (DESI-MSI) [J]. Journal of the American Society for Mass Spectrometry, 2017,28(6):1136-1148. [52] Armitage J M, Hughes L, Sangion A, et al. Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: implications for model selection and tiered modeling frameworks [J]. Environment International, 2021, 154(9):1-11. [53] Li H Z, You J, Wang W X. Multi-compartmental toxicokinetic modeling of fipronil in tilapia: accumulation, biotransformation and elimination [J]. Journal of Hazardous Materials, 2018,360(10):420-427. [54] Wang H T, Xia X H, Liu R, et al. Multicompartmental toxicokinetic modeling of discrete dietary and continuous waterborne uptake of two polycyclic aromatic hydrocarbons by zebrafish [J]. Environmental Science & Technology, 2020,54(2):1054-1065. [55] Habenstein J, Schmitt F, Liessem S, et al. Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus [J]. Journal of Neurochemistry, 2021,158(2):391-412. [56] Ly A, Ragionieri L, Liessem S, et al. Enhanced coverage of insect neuropeptides in tissue sections by an optimized mass-spectrometry-imaging protocol [J]. Analytical Chemistry, 2019,91(3): 1980-1988. [57] Zhang Y, Chen D, Xu Y Z, et al. Stereoselective toxicity mechanism of neonicotinoid dinotefuran in honeybees: new perspective from a spatial metabolomics study [J]. Science of the Total Environment, 2022,809(2):1-12. [58] Anderson D M G, Carolan V A, Crosland S, et al. Examination of the distribution of nicosulfuron in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imaging [J]. Rapid Communications in Mass Spectrometry, 2009,23(9):1321-1327. [59] Wang Y, Jiang L, Jiang G. Emerging chemicals in China: historical development, current situation, and future outlook [J]. Environment & Health, 2024,2(4):180-188. [60] Pareek V, Tian H, Winograd N, et al. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells [J]. Science, 2020,368(6488):283-290. [61] Madio B, Peigneur S, Chin Y K Y, et al. PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold [J]. Cellular and Molecular Life Sciences, 2018,75(24):4511-4524. [62] Zhang L, Jiang H, Wang W X. Subcellular imaging of localization and transformation of silver nanoparticles in the oyster larvae [J]. Environmental Science & Technology, 2020,54(18):11434-11442. [63] Zhou Z P, Zare R N. Personal information from latent fingerprints using desorption electrospray ionization mass spectrometry and machine learning [J]. Analytical Chemistry, 2017,89(2):1369-1372. [64] Johnson G R. PFAS in soil and groundwater following historical land application of biosolids [J]. Water Research, 2022,211(1):1-9. |
|
|
|