|
|
The elimination of phthalate acid esters in crops using endophytic bacteria |
XU Lin, ZHANG You-ai, ZHOU Xian, QIN Chao, GAO Yan-zheng |
Institute of Organic Contaminant Control and Soil Remediation, Nanjing Agricultural University, Nanjing 210095, China |
|
|
Abstract As emerging organic pollutants, phthalate acid esters (PAEs) can accumulate in crops such as vegetables, fruits, grains through absorption and enter the human body via the food chain, posing great threats to human health. PAEs contamination in soil has attracted widespread attention. How to directly reduce PAEs in crops to ensure the safety of agricultural production in polluted areas has been a hot spot and big challenge in agro-environmental field. Endophytic bacteria are living in and symbiotic with crops. It is expected that effective elimination of PAEs in crops can be achieved by isolating and screening endophytic bacteria with PAEs degradation function from crops grown up in PAEs contaminated areas, and colonising them into contaminated crops. In this paper, we analyzed the PAEs contamination differences in various types of crops and their distribution characteristics in different tissues, sorted out the reported endophytic bacterial species with PAEs degradation functions, and compared the effects of the functional endophytic bacteria on PAEs elimination in crops under different colonization methods, so as to reveal the mechanisms, pathways and key factors of PAEs degradation. It was pointed out that the construction and efficacy of composite endophytic flora for degrading co-existing complexed PAEs and endophytic flora with synergistic functions of “pollutant reduction” and “carbon emissions” coupling are the research directions worth attention in the future.
|
Received: 05 May 2024
|
|
|
|
|
[1] Guo W, Zhang Z, Zhu R, et al. Pollution characteristics, sources, and health risks of phthalate esters in ambient air: A daily continuous monitoring study in the central Chinese city of Nanchang [J]. Chemosphere, 2024,353:141564. [2] Planellór R, Herrero O, Martínez-Guitarte J L, et al. Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes [J]. Aquatic Toxicology, 2011,105(1):62-70. [3] Zhou B, Zhao L, Sun Y, et al. Contamination and human health risks of phthalate esters in vegetable and crop soils from the Huang-Huai-Hai region of China [J]. Science of the Total Environment, 2021, 778:146281. [4] Sun Q, Liu C, Zhang X, et al. Phthalate ester (PAEs) accumulation in wheat tissues and dynamic changes of rhizosphere microorganisms in the field with plastic-film residue [J]. Science of the Total Environment, 2024,931:172833. [5] Chen S, Yao C, Zhou J, et al. Occurrence and risk assessment of pesticides, phthalates, and heavy metal residues in vegetables from hydroponic and conventional cultivation [J]. Foods, 2024,13(8):1151. [6] Isci G. Assessment of phthalate esters in packaged fruit juices sold in the Turkish market and their implications on human health risk [J]. Food Chemistry, 2024,435:137658. [7] Sun R. Determination of fifteen types of phthalic acid esters plasticizer residues in aquatic products by gas chromatography-mass spectrometry [J]. Journal of Instrumental Analysis, 2013,127:515-521. [8] Xu D, Deng X, Fang E, et al. Determination of 23 phthalic acid esters in food by liquid chromatography tandem mass spectrometry [J]. Journal of Chromatography A, 2014,1324:49-56. [9] Yang Q, He Z, Shi Y, et al. Determination of 17phthalate esters in water using GC-MS combined with magnetic solid phase extraction with Fe3O4@GO [J]. Chinese Journal of Analytical Chemistry, 2024, 52(4):100378. [10] Ye D M, Yang H, Xu T T, et al. Underlying degradation of phthalates via microbials in dust from different microenvironments [J]. Environmental Science & Technology, 2023,57(26):9744-9753. [11] Bulgarelli D, Schlaeppi K, Spaephen S, et al. Structure and functions of the bacterial microbiota of plants [J]. Annual Review of Plant Biology, 2013,64:807-838. [12] Liu L H, Yuan T, Zhang J Y, et al. Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates [J]. Science of the Total Environment, 2022,806(1):150310. [13] Liu L H, Zhang J Y, Tang G X, et al. Endophytic phthalate-degrading Bacillus subtilis N-1-gfp colonizing in soil-crop system shifted indigenous bacterial community to remove di-n-butyl phthalate [J]. Journal of Hazardous Materials, 2023,449:130993. [14] Liao J, Deng C, Chen Y, et al. Pollution levels, sources, and spatial distribution of phthalate esters in soils of the west lake scenic area [J]. Huanjing Kexue, 2019,40(7):3378-3387. [15] Zhang Q Q, Ma Z R, Cai Y Y, et al. Agricultural plastic pollution in China: Generation of plastic debris and emission of phthalic acid esters from agricultural films [J]. Environmental Science & Technology, 2021,55(18):12459-12470. [16] 丁伟丽,刘 琪,刘秋云,等.中国地膜产品塑化剂特点及风险评价 [J]. 农业环境科学学报, 2021,40(5):1008-1016. Ding W, Liu Q, Liu Q, et al. Characteristics and risk assessment of plasticizers for plastic film products in China [J]. Journal of Agro-Environment Science, 2021,40(5):1008-1016. [17] Gao D, Li Z, Wen Z, et al. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China [J]. Chemosphere, 2014,95:24-32. [18] 冯天朕,陈 苏.微塑料与Cd交互作用对小麦种子发芽的生态毒性研究 [J]. 中国环境科学, 2022,42(4):1892-1900. Feng T, Chen S. Ecotoxicity of microplastics and Cd interaction on wheat seed germination [J]. China Environmental Science, 2022,42(4): 1892-1900. [19] 梁浩花,王亚娟,陶 红,等.银川市东郊设施蔬菜基地土壤中邻苯二甲酸酯污染特征及健康风险评价 [J]. 环境科学学报, 2018,38(9): 3703-3713. Liang H, Wang Y, Tao H, et al. Phthalate pollution characteristics and health risk assessment in soil of facility vegetable base in the eastern suburbs of Yinchuan city [J]. Journal of Environmental Science, 2018,38(9):3703-3713. [20] 陈永山,骆永明,章海波,等.设施菜地土壤酞酸酯污染的初步研究 [J]. 土壤学报, 2011,48(3):516-523. Chen Y, Luo Y, Zhang H, et al. Preliminary study on phthalate contamination in soil of facility vegetable plot [J]. Journal of Soil Science, 2011,48(3):516-523. [21] Chen Y, Wu C, Zhang H, et al. Empirical estimation of pollution load and contamination levels of phthalate esters in agricultural soils from plastic film mulching in China [J]. Environmental Earth Sciences, 2013,70:239-247. [22] Mo C H, Cai Q Y, Tang S R, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China [J]. Archives of Environmental Contamination and Toxicology, 2009,56(2):181-189. [23] Wang J, Chen G, Christie P, et al. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses [J]. Science of the Total Environment, 2015,523:129-137. [24] 曾巧云,莫测辉,蔡全英.农业土壤中邻苯二甲酸酯的污染现状与危害 [J]. 广东农业科学, 2009,7:90-96. Zeng Q, Mo C, Cai Q. Status and hazards of phthalate pollution in agricultural soil [J]. Guangdong Agricultural Sciences, 2009,7:90-96. [25] 李海涛,黄岁樑.水环境中邻苯二甲酸酯的迁移转化研究 [J]. 环境污染与防治, 2006,11:853-858. Li H, Huang S. Study on the migration and transformation of phthalates in aqueous environment [J]. Environmental Pollution and Control, 2006,11:853-858. [26] 杨 杉,吕圣红,汪 军,等.酞酸酯在土壤中的环境行为与健康风险研究进展 [J]. 中国生态农业学报, 2016,24(6):695-703. Yang S, Lv S, Wang J, et al. Research progress on environmental behavior and health risks of phthalate esters in soil [J]. Chinese Journal of Eco-Agriculture, 2016,24(6):695-703. [27] 曾巧云,莫测辉,蔡全英,等.菜心对邻苯二甲酸酯(PAEs)吸收途径的初步研究 [J]. 农业工程学报, 2005,8:137-141. Zeng Q, Mo C, CAI Q, et al. Preliminary study on the absorption pathway of phthalates (PAEs) in choy sum [J]. Transactions of the CSAE, 2005,8:137-141. [28] Sun J, Wu X, Gan J. Uptake and metabolism of phthalate esters by edible plants [J]. Environmental Science & Technology, 2015,49(14): 8471-8478. [29] 刘彦爱.邻苯二甲酸酯在土壤—蔬菜系统中的累积、毒性效应及其生物有效性 [D]. 镇江:江苏大学, 2019. Liu Y. Accumulation, toxic effects and bioavailability of phthalates in soil-vegetable system [D]. Zhenjiang: Jiangsu University, 2019. [30] 赵胜利,杨国义,张天彬,等.珠三角城市群典型城市土壤邻苯二甲酸酯污染特征 [J]. 生态环境学报, 2009,18(1):128-133. Zhao S, Yang G, Zhang T, et al. Phthalate pollution characteristics of typical urban soil in the Pearl River Delta urban agglomeration [J]. Ecology and Environmental Sciences, 2009,18(1):128-133. [31] 张小红,王亚娟,陶 红,等.宁夏土壤中PAEs污染特征及健康风险评价 [J]. 中国环境科学, 2020,40(9):3930-3941. Zhang X, Wang Y, Tao H, et al. Pollution characteristics and health risk assessment of PAEs in soil in Ningxia [J]. China Environmental Science, 2020,40(9):3930-3941. [32] 李 彬,吴 山,梁金明,等.中山市农业区域土壤-农产品中邻苯二甲酸酯(PAEs)污染特征 [J]. 环境科学, 2015,36(6):2283-2291. Li B, Wu S, Liang J, et al. Pollution characteristics of phthalates (PAEs) in soil-agricultural products in agricultural areas of Zhongshan City [J]. Environmental Science, 2015,36(6):2283-2291. [33] 杨国义,张天彬,高淑涛,等.广东省典型区域农业土壤中邻苯二甲酸酯含量的分布特征 [J]. 应用生态学报, 2007,10:2308-2312. Yang G, Zhang T, Gao S, et al. Distribution characteristics of phthalate content in agricultural soils in typical areas of Guangdong Province [J]. Chinese Journal of Applied Ecology, 2007,10:2308-2312. [34] 史陈雪,武倩倩,刘泉利,等.农业土壤中邻苯二甲酸酯分布特征及影响因素综述 [J]. 生态与农村环境学报, 2024,40(1):23-35. Shi C, Wu Q, Liu Q, et al. A review of the distribution characteristics and influencing factors of phthalates in agricultural soils [J]. Journal of Ecology and Rural Environment, 2024,40(1):23-35. [35] 关 卉,王金生,万洪富,等.雷州半岛典型区域土壤邻苯二甲酸酯(PAEs)污染研究 [J]. 农业环境科学学报, 2007,2:622-628. Guan H, Wang J, Wan H, et al. Study on soil phthalate (PAEs) pollution in typical areas of Leizhou Peninsula [J]. Journal of Agro-Environment Science, 2007,2:622-628. [36] 李海峰,刘国宏,刘志刚,等.吐鲁番设施菜地土壤和蔬菜中邻苯二甲酸酯污染特征及健康风险评价 [J]. 甘肃农业大学学报, 2023,58(1):202-213. Li H, Liu G, Liu Z, et al. Characteristics and health risk assessment of phthalate contamination in soil and vegetables of vegetable plot in Turpan [J]. Journal of Gansu Agricultural University, 2023,58(1):202-213. [37] 张佳辉.桃果实及主产区桃园中邻苯二甲酸酯残留特征及风险评估研究 [D]. 沈阳:沈阳农业大学, 2023. Zhang J. Characteristics and risk assessment of phthalate residues in peach fruits and orchards in main producing areas [D]. Shenyang: Shenyang Agricultural University, 2023. [38] 岑 福,殷根深,蒋明星,等.邻苯二甲酸酯(PAEs)对不同植物根际微生物群落的影响 [J]. 贵州农业科学, 2024,52(1):66-73. Cen F, Yin G, Jiang X, et al. Effects of phthalates (PAEs) on rhizosphere microbial communities in different plants [J]. Guizhou Agricultural Sciences, 2024,52(1):66-73. [39] 冯艳红,应蓉蓉,王国庆,等.中国中西部地区土壤和农产品中邻苯二甲酸酯污染特征及评价 [J]. 环境化学, 2022,41(5):1591-1602. Feng Y, Ying R, Wang G, et al. Characteristics and evaluation of phthalate pollution in soil and agricultural products in central and western China [J]. Environmental Chemistry, 2022,41(5):1591-1602. [40] 鲍美君.典型农田有机磷酸酯和邻苯二甲酸酯的污染特征、植物富集和生态风险 [D]. 大连:大连理工大学, 2022. Bao M. Pollution characteristics, plant enrichment and ecological risks of organophosphates and phthalates in typical farmland [D]. Dalian: Dalian University of Technology, 2022. [41] Barac T, Taghavi S, Borremans B, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants [J]. Nature Biotechnology, 2004,22(5):583-588. [42] Doty S L. Enhancing phytoremediation through the use of transgenics and endophytes [J]. The New Phytologist, 2008,179(2):318-333. [43] Bacon C W, Hinton D M. Bacterial endophytes: The endophytic niche, its occupants, and its utility [M]//GNANAMANICKAM S S. Plant-Associated Bacteria. Dordrecht: Springer Netherlands, 2006:155-194. [44] 覃丽萍,张 艳,农 倩,等.广西赭霉X22对苦瓜的促生防病作用及对叶际细菌群落的影响 [J]. 微生物学通报, 2024,https://wswxtb.ijournals.cn/wswxtbcn/article/abstract/tb240053. Qin L, Zhang Y, Nong Q, et al. Effect of X22on growth and disease control of bitter melon and its effect on bacterial community in the foliar sphere [J]. Microbiology Bulletin, 2024,https://wswxtb.ijournals.cn/wswxtbcn/article/abstract/tb240053. [45] Wu T, Li X, Xu J, et al. Diversity and functional characteristics of endophytic bacteria from two grass species growing on an oil-contaminated site in the Yellow River Delta, China [J]. Science of the Total Environment, 2021,767:144340. [46] Feng N X, Yu J, Mo C, et al. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3 [J]. Science of the Total Environment, 2018,616-617:117-127. [47] Huang Y H, Huang X J, CHEN X H, et al. Biodegradation of di-butyl phthalate (DBP) by a novel endophytic bacterium Bacillus subtilis and its bioaugmentation for removing DBP from vegetation slurry [J]. Journal of Environmental Management, 2018,224:1-9. [48] Xu W J, Wan Q, Wang W F, et al. Biodegradation of dibutyl phthalate by a novel endophytic Bacillus subtilis strain HB-T2under in-vitro and in-vivo conditions [J]. Environmental Technology, 2022,43(13): 1917-1926. [49] 杨 云,肖霞霞,陈小龙,等.一株植物内生枯草芽孢杆菌对6种邻苯二甲酸酯的共代谢降解 [J]. 江苏农业学报, 2023,39(2):393-404. Yang Y, Xiao X, Chen X, et al. Co-metabolic degradation of six phthalates by a plant of Bacillus subtilis [J]. Jiangsu Journal of Agricultural Sciences, 2023,39(2):393-404. [50] 柴阳阳,程江峰,余向阳.1株邻苯二甲酸二丁酯降解内生菌的分离鉴定及降解特性 [J]. 江苏农业科学, 2018,46(23):296-300. Chai Y, Cheng J, Yu X. Isolation, identification and degradation characteristics of dibutyl phthalate-degrading endophytes in one strain [J]. Jiangsu Agricultural Sciences, 2018,46(23):296-300. [51] 肖霞霞,杨 云,马丽雅,等.大蒜内生巨大芽孢杆菌对邻苯二甲酸酯的共代谢降解特性及代谢途径分析 [J]. 江苏农业学报, 2023,39(1): 106-117. Xiao X, Yang Y, Ma L, et al. Co-metabolic degradation characteristics and metabolic pathways of phthalates by Bacillus macrophyticus endophysis in garlic [J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(1):106-117. [52] Li X, Peng D, Zhang Y, et al. Klebsiella sp. PD3, a phenanthrene (PHE)-degrading strain with plant growth promoting properties enhances the PHE degradation and stress tolerance in rice plants [J]. Ecotoxicology and Environmental Safety, 2020,201:110804. [53] Xu J, Lu Q, De Toledo R A, et al. Degradation of di-2-ethylhexyl phthalate (DEHP) by an indigenous isolate Acinetobacter sp. SN13 [J]. International Biodeterioration & Biodegradation, 2017,117:205-214. [54] Fang Y, Zhang L, Wang J, et al. Biodegradation of phthalate esters by a newly isolated Acinetobacter sp. strain LMB-5and characteristics of its esterase [J]. Pedosphere, 2017,27(3):606-615. [55] Sharma N, Kumar V, Maitra S S, et al. DBP biodegradation kinetics by Acinetobacter sp.33F in pristine agricultural soil [J]. Environmental Technology & Innovation, 2021,21:101240. [56] Zhang Y, Chen H, Liu J, et al. Genome sequencing and biodegradation characteristics of the n-butyl benzyl phthalate degrading bacterium-Rhodococcus sp. HS-D2 [J]. International Biodeterioration & Biodegradation, 2018,128:56-62. [57] Wang J, Zhang M Y, Chen T, et al. Isolation and identification of a di-(2-Ethylhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil [J]. Pedosphere, 2015,25(2):202-211. [58] Suhandono S, Kusumawardhani M K, Aditiawati P. Isolation and molecular identification of endophytic bacteria from rambutan fruits (Nephelium lappaceum L.) cultivar binjai [J]. HAYATI Journal of Biosciences, 2016,23(1):39-44. [59] Becerra-Castro C, Kidd P S, Prieto-Fernández, Á, et al. Endophytic and rhizoplane bacteria associated with Cytisus striatus growing on hexachlorocyclohexane-contaminated soil: isolation and characterization [J]. Plant and Soil, 2011,340(1/2):413-433. [60] Tiwari S, Sarangi B K, Thul S T. Identification of arsenic resistant endophytic bacteria from Pteris vittata roots and characterization for arsenic remediation application [J]. Journal of Environmental Management, 2016,180:359-365. [61] Prior R B, Perkins R L. Artifacts induced by preparation for scanning electron microscopy, in Proteus mirabilis exposed to carbenicillin [J]. Canadian Journal of Microbiology, 1974,20(5):794-795. [62] Chao Y, Liu N, Zhang T, et al. Isolation and characterization of bacteria from engine sludge generated from biodiesel-diesel blends [J]. Fuel, 2010,89(11):3358-3364. [63] Sagar A. Bergey’s manual of systematic bacteriology and determinative bacteriology [EB]. https://microbenotes.com/bergeys-manual-of-systematic-bacteriology-and-determinative-bacteriology/2022-02-12. [64] Nair H P, Puthusseri R M, Vincent H, et al. 16S rDNA-based bacterial diversity analysis of Arabian Sea sediments: A metagenomic approach [J]. Ecological Genetics and Genomics, 2017,3-5:47-51. [65] 孙 真,郑 亮,邱浩斌.植物根际促生细菌定殖研究进展 [J]. 生物技术通报, 2017,33(2):8-15. Sun Z, Zheng L, Qiu H. Research progress on colonization of plant rhizosphere growth-promoting bacteria [J]. Biotechnology Bulletin, 2017,33(2):8-15. [66] 隋 丽,路 杨,周麟妍,等.球孢白僵菌定殖提高番茄对灰霉病抗性及其作用机理 [J]. 植物保护学报, 2024,51(1):203-210. Sui L, Lu Y, Zhou L, et al. Beauveria bassiana colonization improves resistance to gray mold in tomato and its mechanism [J]. Chinese Journal of Plant Protection, 2024,51(1):203-210. [67] 张 帅,王 建,马俊超,等.邻苯二甲酸酯降解功能内生菌群的筛选及定殖效能 [J]. 中国环境科学, 2024,44(3):1554-1561. Zhang S, Wang J, Ma J, et al. Screening and colonization efficiency of phthalate degrading functional endophytic flora [J]. China Environmental Science, 2024,44(3):1554-1561. [68] Singh N, Dalal V, Mahto J K, et al. Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog [J]. Journal of Hazardous Materials, 2017,338:11-22. [69] 赵 磊.寒冷地区高效石油降解菌群的筛选与降解的研究 [D]. 沈阳:辽宁大学, 2024. Zhao L. Screening and degradation of efficient petroleum-degrading microbiota in cold regions [D]. Shenyang: Liaoning University, 2024. [70] 范瑞娟,刘雅琴,张 琇.嗜盐碱高环PAHs降解菌的分离及其降解特性研究 [J]. 农业环境科学学报, 2019,38(6):1280-1287. Fan R, Liu Y, Zhang X. Isolation and degradation characteristics of saline-alkali macrocyclic PAHs [J]. Journal of Agro-Environment Science, 2019,38(6):1280-1287. [71] 孙倩姝,白 洁,李 辉,等.混合菌群DBFC对二苯并呋喃的降解特性及其代谢途径 [J]. 微生物学报, 2021,61(11):3557-3568. Sun Q, Bai J, Li H, et al. Degradation characteristics of DBFC for dibenzofurans in mixed flora and its metabolic pathway [J]. Acta Microbiologica Sinica, 2021,61(11):3557-3568. [72] Kong X, Jin D, Tai X, et al. Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11and the microbial ecological effects in soil [J]. Science of the Total Environment, 2019,667:691-700. [73] Amir S, Hafidi M, Merlina G, et al. Fate of phthalic acid esters during composting of both lagooning and activated sludges [J]. Process Biochemistry, 2005,40(6):2183-2190. [74] Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds-from one strategy to four [J]. Nature Reviews Microbiology, 2011,9(11):803-816. [75] Gao D W, Wen Z D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes [J]. Science of the Total Environment, 2016,541:986-1001. [76] Vamsee-Krishna C, Mohan Y, Phale P S. Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4 [J]. Applied Microbiology and Biotechnology, 2006,72(6):1263-1269. [77] 李 成,刘春敬,柳 月,等.鲍曼不动杆菌DP-2降解邻苯二甲酸酯的广谱性及降解途径的初步研究 [J]. 林业与生态科学, 2023,38(3): 300-310. Li C, Liu C, Liu Y, et al. Broad-spectrum degradation of phthalates by Acinetobacter baumannii DP-2and a preliminary study on the degradation pathway of phthalates [J]. Forestry and Ecological Science, 2023,38(3):300-310. |
|
|
|