|
|
Advances of chlorine-resistant modification and chlorination remediation of polyamide membrane |
ZHU Qin-yan, LI Xin-dong, BAO Luo, JIA Jiang-hui, YU Si-Wei, ZHONG Zhao-huang, CAI Meng |
Jiangxi Provincial Key Laboratory of Water Ecological Conservation at Headwater Regions;Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Ganzhou 341000, China |
|
|
Abstract Two typical PA membranes, m-phenylenediamine-trimesoyl chloride and piperazine-trimesoyl chloride, are introduced and their latest chlorine destruction mechanisms are analyzed in depth. On this basis, the chlorine-resistant modification methods for these two membranes are further discussed, including changing the monomer structure, intrinsic doping techniques, physical coating methods and chemical grafting methods. The latest research research advances in the field of chlorinated PA membrane remediation are briefly discussed, including the reduction method after initial chlorination and the remediation with repair agent after chlorination degradation. The analysis shows that the development of chlorine-resistant PA membranes is still facing great challenges, and the research on chlorine-resistant modification of PA membranes should be carried out without sacrificing its separation performance, taking into account all other properties of the membrane, and flexibly utilizing various modification methods.
|
Received: 25 June 2024
|
|
|
|
|
[1] Jones E, Qadir M, Van Vliet M T H, et al. The state of desalination and brine production: A global outlook [J]. Science of The Total Environment, 2019,657:1343-1356. [2] Liu Y, Xin Z, Wang M, et al. Optimizing separation layer structure of polyamide composite membrane for high permselectivity based on post-treatment: A review [J]. Desalination, 2024,580:117585. [3] Habib S, Weinman S T. A review on the synthesis of fully aromatic polyamide reverse osmosis membranes [J]. Desalination, 2021,502: 114939. [4] Wu X, Chen T, Dong G, et al. A critical review on polyamide and polyesteramide nanofiltration membranes: Emerging monomeric structures and interfacial polymerization strategies [J]. Desalination, 2024,577117379-. [5] Wang A, Huo S, Croué J P, et al. Reaction of polyamide membrane model monomers with chlorine dioxide: Kinetics, pathways, and implications [J]. Water Research, 2023,241:120159. [6] Agus E, Voutchkov N, Sedlak D L. Disinfection by-products and their potential ibarct on the quality of water produced by desalination systems: A literature review [J]. Desalination, 2009,237(1-3):214-237. [7] Gu J E, Jun B M, Kwon Y N. Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane [J]. Water Research, 2012,46(16):5389-5400. [8] Kwon Y, Tang C Y, Leckie J O. Change of membrane performance due to chlorination of crosslinked polyamide membranes [J]. Journal of Applied Polymer Science, 2006,102(6):5895-5902. [9] Yao Y, Zhang W, Du Y, et al. Toward Enhancing the chlorine resistance of reverse osmosis membranes: An effective strategy via an end-capping technology [J]. Environmental Science & Technology, 2019,53(3):1296-1304. [10] Jamaly S, Darwish N N, Ahmed I, et al. A short review on reverse osmosis pretreatment technologies [J]. Desalination, 2014,354:30-38. [11] 侯 琴,衣 刚,卢彦斌,等.一种耐氯性聚酰胺纳滤膜制备及耐氯性评价 [J]. 膜科学与技术, 2023,43(4):69-74. Hou Q, Yi G, Lu Y B, et al. Preparation of a chlorine-resistant polyamide nanofiltration membrane and evaluation of its chlorine resistance [J]. Membrane Science and Technology, 2023,43(4):69-74. [12] Isaias N P. Experience in reverse osmosis pretreatment [J]. Desalination, 2001,139(1-3):57-64. [13] Cheng L, Meng Q W, Ge Q. Construction and chlorine resistance of thiophene-poly(ethyleneimine)-based dual-functional nanofiltration membranes [J]. ACS Applied Materials & Interfaces, 2023,15(7): 10018-10029. [14] Zubair M M, Saleem H, Zaidi S J. Recent progress in reverse osmosis modeling: An overview [J]. Desalination, 2023,564:116705. [15] Dsilva Winfred Rufuss D, Kapoor V, Arulvel S, et al. Advances in forward osmosis (FO) technology for enhanced efficiency and output: A critical review [J]. Journal of Cleaner Production, 2022,356:131769. [16] Meng Q W, Cheng L, Ge Q. Recent advances and future challenges of polyamide-based chlorine-resistant membrane [J]. Advanced Membranes, 2023,3:100075. [17] Stolov M, Freger V. Degradation of polyamide membranes exposed to Chlorine: An Impedance Spectroscopy Study [J]. Environmental Science & Technology, 2019,53(5):2618-2625. [18] Verbeke R, Gómez V, Vankelecom I F J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes [J]. Progress in Polymer Science, 2017,72:1-15. [19] Glater J, Zachariah M R, Mccray S B, et al. Reverse osmosis membrane sensitivity to ozone and halogen disinfectants [J]. Desalination, 1983,48(1):1-16. [20] Powell J, Luh J, Coronell O. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine—kinetics, mechanisms, and modeling [J]. Environmental Science & Technology, 2014,48(5):2741-2749. [21] Challis B G, Challis J A. Reactions of the carboxamide group [M]. John Wiley & Sons, Ltd, 1970:731-857. [22] Avlonitis S, Hanbury W T, Hodgkiess T. Chlorine degradation of aromatic polyamides [J]. Desalination, 1992,85(3):321-334. [23] Huang H, Lin S, Zhang L, et al. Chlorine-resistant polyamide reverse osmosis membrane with monitorable and regenerative sacrificial layers [J]. ACS Applied Materials & Interfaces, 2017,9(11):10214- 10223. [24] Orton K J P, Soper F G, Williams G. CXXXII.—The chlorination of anilides. Part III. N-chlorination and C-chlorination as simultaneous side reactions [J]. Journal of the Chemical Society (Resumed), 1928(0): 998-1005. [25] Huang K, Reber K P, Toomey M D, et al. Reactivity of the polyamide membrane monomer with free chlorine: Reaction kinetics, mechanisms, and the role of chloride [J]. Environmental Science & Technology, 2019,53(14):8167-8176. [26] Glater J, Zachariah M R. Mechanistic study of halogen interaction with Polyamide reverse-osmosis membranes. [C] //Reverse osmosis and ultrafiltration. Based on a symposium held at the 188th Meeting of the American Chemical Society. Philadelphia, PA, USA: ACS, 1985:345-358. [27] Huang K, Reber K P, Toomey M D, et al. Reactivity of the polyamide membrane monomer with free chlorine: Role of bromide [J]. Environmental Science & Technology, 2021,55(4):2575-2584. [28] Hashiba K, Nakai S, Ohno M, et al. Deterioration mechanism of a tertiary polyamide reverse osmosis membrane by hypochlorite [J]. Environmental Science & Technology, 2019,53(15):9109-9117. [29] Do V T, Tang C Y, Reinhard M, et al. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite [J]. Environmental Science & Technology, 2012,46(2):852-859. [30] Do V T, Tang C Y, Reinhard M, et al. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane—mechanisms and implications [J]. Environmental Science & Technology, 2012, 46(24):13184-13192. [31] Soice N P, Maladono A C, Takigawa D Y, et al. Oxidative degradation of polyamide reverse osmosis membranes: Studies of molecular model compounds and selected membranes [J]. Journal of Applied Polymer Science, 2003,90(5):1173-1184. [32] Powell J, Luh J, Coronell O. Amide link scission in the polyamide active layers of thin-film composite membranes upon exposure to free chlorine: Kinetics and mechanisms [J]. Environmental Science & Technology, 2015,49(20):12136-12144. [33] Chew Y T, Yong W F. Recent advances of thin film nanocomposite membranes: Effects of shape/structure of nanomaterials and interfacial polymerization methods [J]. Chemical Engineering Research and Design, 2021,172:135-158. [34] 王武斌,王 锦,窦蒙蒙,等.纳滤膜镁锂分离机理与选择渗透性研究进展 [J]. 中国环境科学, 2023,43(8):3983-3993. Wang W B, Wang J, Dou M M, et al. Research progress on separation principle and selective permeability of magnesium and lithium by nanofiltration membrane [J]. China Environmental Science, 2023,43 (8):3983-3993. [35] Liu S, Wu C, Hou X, et al. Understanding the chlorination mechanism and the chlorine-induced separation performance evolution of polypiperazine-amide nanofiltration membrane [J]. Journal of Membrane Science, 2019,573:36-45. [36] Fields J D, Kropp P J. Surface-mediated reactions. 9. Selective oxidation of primary and secondary amines to hydroxylamines [J]. The Journal of Organic Chemistry, 2000,65(19):5937-5941. [37] Ma Z, Wang C, Li R, et al. Fouling- and chlorine- resistant bilayer heterostructured Janus charged nanofiltration membranes constructed via novel electrospray polymerization-based method [J]. Journal of Membrane Science, 2024,690:122178. [38] Li M fei, Yang S xia, Fu W J, et al. Chlorine degradation of semi-aromatic polypiperazine-amide membranes and the mechanisms [J]. Journal of Membrane Science, 2024,696:122469. [39] Kang G D, Gao C J, Chen W D, et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane [J]. Journal of Membrane Science, 2007,300(1):165-171. [40] Raval H D, Trivedi J J, Joshi S V, et al. Flux enhancement of thin film composite RO membrane by controlled chlorine treatment [J]. Desalination, 2010,250(3):945-949. [41] Kawaguchi T, Tamura H. Chlorine-resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides [J]. Journal of Applied Polymer Science, 1984,29(11):3359-3367. [42] Shintani T, Matsuyama H, Kurata N. Development of a chlorine- resistant polyamide reverse osmosis membrane [J]. Desalination, 2007,207(1):340-348. [43] 刘立芬,徐德志,茅佩卿,等.一种新型聚酰亚胺-氨酯反渗透复合膜材料的合成及表征 [J]. 高等学校化学学报, 2012,33(7):1605-1612. Liu L F, Xu D Z, Mao P Q, et al. Synthesis and characterization of a novel polyimide-urethane reverse osmosis composite membrane material [J]. Chemical Journal of Chinese Universities, 2012,33(7): 1605-1612. [44] 黄 海.高性能耐氯聚酰胺反渗透复合膜的制备与性能研究 [D]. 杭州:浙江大学, 2016. Huang H. Study on preparation and performance of polyamide reverse osmosis membrane with high chlorine-resistance [D]. Hangzhou: Zhejiang University, 2016. [45] 刘 超.抗污染耐氯聚酰胺膜的制备与分离性能研究 [D]. 哈尔滨:哈尔滨工业大学, 2021. Liu C. Study on preparation and separation properties of anti-fouling and chlorine-resistant polyamide membrane [D]. Harbin: Harbin Institute of Technology, 2021. [46] Wang J, Zhang S, Wu P, et al. In situ surface modification of thin-film composite polyamide membrane with zwitterions for enhanced chlorine resistance and transport properties [J]. ACS Applied Materials & Interfaces, 2019,11(12):12043-12052. [47] Yu S, Liu M, Lü Z, et al. Aromatic-cycloaliphatic polyamide thin-film composite membrane with improved chlorine resistance prepared from m-phenylenediamine-4-methyl and cyclohexane-1,3,5-tricarbonyl chloride [J]. Journal of Membrane Science, 2009,344(1/2):155-164. [48] Konagaya S, Kuzumoto H, Watanabe O. New reverse osmosis membrane materials with higher resistance to chlorine [J]. Journal of Applied Polymer Science, 2000,75(11):1357-1364. [49] Jeong B H, Hoek E M V, Yan Y, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes [J]. Journal of Membrane Science, 2007,294(1/2):1-7. [50] Li W xuan, Yang Z, Liu W liang, et al. Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification [J]. Journal of Membrane Science, 2021,618:118681. [51] Cheng W, Xu H, Wang P, et al. Modification Mechanism of Polyamide Reverse Osmosis Membrane by Persulfate: Roles of Hydroxyl and Sulfate Radicals [J]. Environmental Science & Technology, 2022,56 (12):8864-8874. [52] Lau W J, Gray S, Matsuura T, et al. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches [J]. Water Research, 2015,80:306-324. [53] 刘彩虹,何 强,马 军.纳米二氧化硅改性聚酰胺复合膜及其抗污染性能 [J]. 中国环境科学, 2020,40(4):1531-1536. Liu C H, He Q, Ma J. Research on the modification of thin-film composite membrane by silica nanoparticles and antifouling performance [J]. China Environmental Science, 2020,40(4):1531- 1536. [54] Vatanpour V, Paziresh S, Naziri Mehrabani S A, et al. TiO2/CDs modified thin-film nanocomposite polyamide membrane for simultaneous enhancement of antifouling and chlorine-resistance performance [J]. Desalination, 2022,525:115506. [55] Shao F, Su X, Shen X, et al. Highly improved chlorine resistance of polyamide reverse membrane by grafting layers of graphene oxide [J]. Separation and Purification Technology, 2021,254:117586. [56] Shukla A K, Alam J, Alhoshan M S, et al. Thin-Film Nanocomposite Membrane Incorporated with Porous Zn-Based Metal-Organic Frameworks: Toward Enhancement of Desalination Performance and Chlorine Resistance [J]. ACS Applied Materials & Interfaces, 2021, 13(24):28818-28831. [57] Wang F, Zheng T, Xiong R, et al. CDs@ZIF-8 modified thin film polyamide nanocomposite membrane for simultaneous enhancement of chlorine-resistance and disinfection byproducts removal in drinking water [J]. ACS Applied Materials & Interfaces, 2019,11(36):33033- 33042. [58] 张 林,黄 海.聚酰胺反渗透膜的氯化机理及其耐氯改性研究进展 [J]. 水处理技术, 2015,41(10):42-47. Zhang L, Huang H Research progress on chlorination mechanism of polyamide reverse osmosis membrane and its chlorine resistance modification [J]. Technology of Water Treatment, 2015,41(10):42-47. [59] Abbaszadeh M, Krizak D, Kundu S. Layer-by-layer assembly of graphene oxide nanoplatelets embedded desalination membranes with improved chlorine resistance [J]. Desalination, 2019,470:114116. [60] Wang X, Li Q, Zhang J, et al. Novel thin-film reverse osmosis membrane with MXene Ti3C2T embedded in polyamide to enhance the water flux, anti-fouling and chlorine resistance for water desalination [J]. Journal of Membrane Science, 2020,603:118036. [61] Liao Z, Zhu J, Li X, et al. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review [J]. Separation and Purification Technology, 2021,266:118567. [62] Huang H, Qu X, Dong H, et al. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane [J]. RSC Advances, 2013,3(22):8203. [63] Lee S Y, Kim H J, Patel R, et al. Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties [J]. Polymers for Advanced Technologies, 2007,18(7):562-568. [64] Chen Y, Zhang T, Chai D, et al. Enhancing the NaCl/Na2SO4 separation selectivity and chlorine resistance of nanofiltration membranes by incorporating novel designed starch nanoparticles [J]. Applied Surface Science, 2022,604:154417. [65] 柳 圳,赵 颂,王 志,等.反渗透膜耐氯及氯化修复研究进展 [J]. 膜科学与技术, 2019,39(2):123-134,142. Liu Z, Zhao S, Wang Z, et al. Advances in chlorine resistance and chlorination remediation of reverse osmosis membranes [J]. Membrane Science and Technology, 2019,39(2):123-134,142. [66] Li D, Lu H, Yan X, et al. Preparation of chlorine resistant thin- film-composite reverse-osmosis polyamide membranes with tri-acyl chloride containing thioether units [J]. Journal of Applied Polymer Science, 2023,140(8):e53518. [67] Shin D H, Kim N, Lee Y T. Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance [J]. Journal of Membrane Science, 2011,376(1/2):302-311. [68] Gohil J M, Suresh A K. Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies [J]. Journal of Membrane Science, 2017,541:108-126. [69] Gholami S, Rezvani A, Vatanpour V, et al. Improving the chlorine resistance property of polyamide TFC RO membrane by polyethylene glycol diacrylate (PEGDA) coating [J]. Desalination, 2018,443:245- 255. [70] Yan W, Liu L, Dong C, et al. Surface modification of reverse osmosis membrane with tannic acid for improving chlorine resistance [J]. Desalination, 2021,498:114639. [71] Zhang Z, Wang Z, Wang J, et al. Enhancing chlorine resistances and anti-biofouling properties of commercial aromatic polyamide reverse osmosis membranes by grafting 3-allyl-5,5-dimethylhydantoin and N,N'-Methylenebis(acrylamide) [J]. Desalination, 2013,309:187-196. [72] Liu M, Chen Q, Wang L, et al. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA) [J]. Desalination, 2015,367:11-20. [73] Kwon Y N, Hong S, Choi H, et al. Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement [J]. Journal of Membrane Science, 2012,415-416:192- 198. [74] Yi Z, Shao F, Yu L, et al. Chemical grafting N-GOQD of polyamide reverse osmosis membrane with improved chlorine resistance, water flux and NaCl rejection [J]. Desalination, 2020,479:114341. [75] Suresh D, Goh P S, Ismail A F, et al. Complexation of tannic acid/silver nanoparticles on polyamide thin film composite reverse osmosis membrane for enhanced chlorine resistance and anti- biofouling properties [J]. Desalination, 2022,543:116107. [76] Cheng X Q, Liu Y, Guo Z, et al. Nanofiltration membrane achieving dual resistance to fouling and chlorine for “green” separation of antibiotics [J]. Journal of Membrane Science, 2015,493:156-166. [77] Peng H, Yu K, Liu X, et al. Quaternization-spiro design of chlorine- resistant and high-permeance lithium separation membranes [J]. Nature Communications, 2023,14(1):5483. [78] Meng W, Xue Q, Zhu J, et al. Exploiting sulfonated covalent organic frameworks to fabricate long-lasting stability and chlorine-resistant thin-film nanocomposite nanofiltration membrane [J]. npj Clean Water, 2024,7(1):23. [79] Qian G, Zhu D, Li J, et al. A facile strategy to develop highly stable antifouling NF membranes with chlorine resistance based on polyamide-sulfonamide active layer [J]. Journal of Environmental Chemical Engineering, 2023,11(3):110146. [80] Wang C, Park M J, Seo D H, et al. Inkjet printing of graphene oxide and dopamine on nanofiltration membranes for improved anti-fouling properties and chlorine resistance [J]. Separation and Purification Technology, 2021,254:117604. [81] Zhu X, Xu D, Gan Z, et al. Improving chlorine resistance and separation performance of thin-film composite nanofiltration membranes with in-situ grafted melamine [J]. Desalination, 2020,489: 114539. [82] Li Y, Li J, Zhu D, et al. Facile dual-functionalization of NF membranes with excellent chlorine resistance and good antifouling property by in-situ grafting of zwitterions [J]. Separation and Purification Technology, 2023,315:123660. [83] Suresh D, Goh P S, Ismail A F. Dual functionalization of polyamide reverse osmosis thin film composite membrane for improving chlorine resistance [J]. Materials Today Communications, 2024,39:109238. [84] Liu Y, Lin B, Liu W, et al. Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance [J]. RSC Advances, 2018,8(64):36430-36440. [85] Zhang Y, Zou W S, Kong W, et al. Dual integration of amine- functionalized carbon dots endowed nanofiltration membranes with highly efficient biofouling/ acid/chlorine resistance for effective Mg2+/ Li+ separation [J]. Journal of Membrane Science, 2024,696:122542. [86] Zhou Z, Huang G, Xiong Y, et al. Unveiling the susceptibility of functional groups of poly(ether sulfone)/polyvinylpyrrolidone membranes to NaOCl: A two-dimensional correlation spectroscopic study [J]. Environmental Science & Technology, 2017,51(24):14342- 14351. [87] Wang Y, Wang Z, Wang J. Lab-scale and pilot-scale fabrication of amine-functional reverse osmosis membrane with improved chlorine resistance and antimicrobial property [J]. Journal of Membrane Science, 2018,554:221-231. [88] Lu J, Yang B, Lu D, et al. Secondary interfacial reaction of p-aminodiphenylamine enables polyamide reverse osmosis membrane with enhanced and regenerative chlorine resistance [J]. Journal of Membrane Science, 2023,688:122148. [89] 郭中尉.原位修复聚酰胺反渗透膜并提升其耐氯性与抗污染性 [D]. 杭州:浙江理工大学, 2023. Guo Z W. In situ performance restoration of polyamide reverse osmosis membrane and simultaneous improvements of membrane resistance to chlorine and fouling [D]. Hangzhou: Zhejiang Sci-tech University, 2023. [90] 俞萍萍.鞣酸修复氯化降解芳香聚酰胺反渗透复合膜及其性能研究 [D]. 杭州:浙江理工大学, 2017. Yu P P. Study on the rejuvenation of hypochlorite-degraded polyamide thin-film composite reverse osmosis membrane with tannic acid and the properties of the restored membrane [D]. Hangzhou:Zhejiang Sci-tech University, 2017. [91] Xie X, Yang Q, Sun Q, et al. Alkaline responsive self-healing nanocontainer composite reverse osmosis membrane by layer self-assembly: Enhanced permeable and chlorine resistance properties [J]. Journal of Industrial and Engineering Chemistry, 2022,113:530- 539. |
|
|
|