Photocatalytic behavior of NO removal on TiO2 was carried out in the simulated urban tunnel exhaust. The economy of its application was analyzed for an urban tunnel with length of 1km and height of 5m. TiO2 calcined at 400℃ (TiO2-400) showed the best adsorption and photocatalytic performance among the samples. The maximum NOx conversion of 30% was obtained on TiO2-400. NOx adsorption and photocatalytic performance was significantly influenced by various feeding gases. The inhibition of NOx adsorption decreased in the order of CH4≈CO2 > CO. The promotion of removal efficiency of NOx was ranked as CO > CH4 > CO2. When the light irradiance increased, the photocatalytic activity and stability of catalyst were enhanced and decreased, respectively. Light irradiance of 6.4ugW/cm2 is the appropriate illumination intensity for photocatalysis of DeNOx. Both NO adsorption capacity and lifetime of catalyst were significantly promoted with the increase of catalyst usage. When catalyst dosage was 15mg/cm2, the adsorption capacity of NO was 0.88mg/g, and the stabilization time of the catalyst was 110min. This technology has characteristics with low cost and good economy.
潘华, 陈雪松, 王莉, 梅瑜, 徐冬梅. TiO2光催化净化城市隧道中NOx的行为及经济性[J]. 中国环境科学, 2019, 39(1): 118-125.
PAN Hua, CHEN Xue-song, WANG Li, MEI Yu, XU Dong-mei. Photocatalytic performance and economy of de-NOx in urban tunnel exhaust by TiO2. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(1): 118-125.
中华人民共和国交通运输部.2017年交通运输行业发展统计公报[R]. 2018. Ministry of Transport of the People's Republic of China. Statistical bulletin on transportation industry development in 2017[R]. 2018.
[2]
肖益民,盘晓红,张锦鹏.连续公路隧道空气污染物窜流影响的模型试验系统设计[J]. 中国公路学报, 2015,28(11):90-97. Xiao Y M, Pan X H, Zhang J P. Model test system design of channeling effects of air pollutants in continuous road tunnels[J]. China Journal of Highway and Transport, 2015,28(11):90-97.
[3]
王伯光,吕万明,周炎,等.城市隧道汽车尾气中多环芳烃排放特征的研究[J]. 中国环境科学, 2007,27(4):482-487. Wang B G, Lǚ W M, Zhou Y, et al. Emission characteristic of PAHs composition in motor vehicles exhaust of city tunnel[J]. China Environmental Science, 2007,27(4):482-487.
[4]
王成辉,闫琨,韩新宇,等.高原城市昆明公路隧道大气中PM2.5理化特征分析[J]. 环境科学, 2017,38(12):4968-4975. Wang C H, Yan K, Han X Y, et al. Physico-chemical characteristic analysis of PM2.5 in the highway tunnel in the Plateau City of Kunming[J]. Environmental Science, 2017,38(12):4968-4975.
[5]
位楠楠,刘卫,肖德涛,等.隧道大气细颗粒物及其元素的粒径分布特征[J]. 环境科学研究, 2011,24(5):475-481. Wei N N, Liu W, Xiao D T, et al. Size distribution characteristics and elemental composition of airborne fine particles inside a tunnel[J]. Research of Environmental Sciences, 2011,24(5):475-481.
[6]
Kristensson A, Johansson C, Westerholm R, et al. Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden[J]. Atmospheric Environment, 2004,38(5):657-673.
[7]
Indrehus O, Vassbotn P. CO and NO2 pollution in a long two-way traffic road tunnel:investigation of NO2/NOx ratio and modelling of NO2 concentration[J]. Journal of Environmental Monitoring, 2001, 3(2):221-225.
[8]
窦鸿文,明廷臻,许杰,等.城市立体交通系统中污染物传播特性数值模拟[J]. 中国环境科学, 2018,38(1):51-58. Dou H W, Ming T Z, Xu J, et al. Numerical simulation of pollutant propagation characteristics in a three-dimensional urban traffic system[J]. China Environmental Science, 2018,38(1):51-58.
[9]
黄青,宋韬,王伯光,等.城市隧道源排放清单建立方法[J]. 中国环境科学, 2018,38(8):2898-2902. Huang Q, Song T, Wang B T, et al. Method to establish the emission inventory for urban tunnel source[J]. China Environmental Science, 2018,38(8):2898-2902.
[10]
中国环境科学研究院.环境空气质量标准[M]. 北京:中国环境科学出版社, 2012:71. Chinese Research Academy of Environmental Sciences. Ambient air quality standard[M]. Beijing:China Environmental Science Press, 2012:71.
[11]
Guerrini G L. Photocatalytic performances in a city tunnel in Rome:NOx monitoring results[J]. Construction and Building Materials, 2012,27:165-175.
[12]
Hunger M, Hüsken G, Brouwers H J H. Photocatalytic degradation of air pollutants-From modeling to large scale application[J]. Cement and Concrete Research, 2010,40(2):313-320.
[13]
Maggos T, Plassais A, Bartzis J, et al. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels[J]. Environmental Monitoring and Assessment, 2008,136:35-44.
[14]
Lasek J, Yu Y, Wu J C S. Removal of NOx by photocatalytic processes[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2013,14:29-52.
[15]
王元瑞.以TiO2为基质复合氧化物功能材料的合成及应用研究[D]. 吉林大学, 2013. Wang Y R. Synthesis and application of TiO2 based composite oxides[D]. Jilin University, 2013.
[16]
刘文芳,周汝利,王燕子.光催化剂TiO2改性的研究进展[J]. 化工进展, 2016,35(8):2446-2454. Liu W F, Zhou R L, Wang Y Z. Research progress on modification of TiO2 photocatalyst[J]. Chemical Industry and Engineering Progress, 2016,35(8):2446-2454.
[17]
汪成建.TiO2晶型控制及复合光催化剂性能研究[D]. 天津:天津大学, 2003. Wang C J. Study on crystal form control of TiO2 and properties of composite photocatalysts[D]. Tianjin:Tianjin University, 2003.
[18]
Roy S, Aarthi T, Hegde M S, et al. Kinetics of photocatalytic reduction of NO by CO with Pd2+-ion-substituted nano-TiO2[J]. Industrial & Engineering Chemistry Research, 2007,46(17):5798-5802.
[19]
Roy S, Hegde M S, Ravishankar N, et al. Creation of redox adsorption sites by Pd2+ ion substitution in nano TiO2 for high photocatalytic activity of CO oxidation, NO reduction, and NO decomposition[J]. Journal of Physical Chemistry C, 2007,111(23):8153-8160.
[20]
Bowering N, Croston D, Harrison P G, et al. Silver modified degussa P25 for the photocatalytic removal of nitric oxide[J]. International Journal of Photoenergy, 2007,(2007):1-8.
[21]
Bowering N, Walker G S, Harrison P G, Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25[J]. Applied Catalysis B:Environmental, 2006,62(3/4):208-216.
[22]
Mikhaylov R V, Lisachenko A A, Shelimov B N, et al. FTIR and TPD analysis of surface species on a TiO2 photocatalyst exposed to NO, CO, and NO-CO mixtures:Effect of UV-vis light irradiation[J]. Journal of Physical Chemistry C, 2009,113(47):20381-20387.
[23]
Wu Y T, Yu Y H, Nguyen V H, et al. In-situ FTIR spectroscopic study of the mechanism of photocatalytic reduction of NO with methane over Pt/TiO2 photocatalysts[J]. Research on Chemical Intermediates, 2015,41:2153-2164.
[24]
Manzanares M, Fàbrega C, Ossó J O, et al. Engineering the TiO2, outermost layers using magnesium for carbon dioxide photoreduction[J]. Applied Catalysis B, 2014,150-151(18):57-62.
[25]
Choi K M, Kim D, Rungtaweevoranit B, et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light[J]. Journal of America Chemistry Society, 2017,139(1):356-362.