TAGE:a new grid analysis method for source and transport of atmospheric pollutants
LIN Xu-dong1, FU Xian-bin1, KONG De-han1, WANG Chun-ying2, JING Chang-yong3
1. Department of Information Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China;
2. Hebei Sailhero Environmental Protection Hi-tech., Ltd, Shijiazhuang 050035, China;
3. Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
This paper proposes a new grid analysis method for the source and transportation of atmospheric pollutants. First, the air quality model can be operated without the emission source list, but just utilize a pre-set gridded emission source to obtain the pollution impact factor of the emission source. Second, in combination with the pollutant monitoring data, the equations for the total emission intensity of the emission source are constructed and solved by genetic algorithm. Finally, the pollution contribution ratio of the emission source can be calculated based on the pollution impact factor and total emission intensity of the emission source, thereby completing the grid analysis of the source and transportation of the atmospheric pollutant. The proposed method provides a new idea for the analysis and treatment of air pollution conditions without accurate inventory lists. This method has been applied in the tests conducted on the source and transport of PM2.5 during the period from October to December 2017 in the cities of Beijing, Shijiazhuang and Baoding.
蔺旭东, 付献斌, 孔德瀚, 王春迎, 景长勇. TAGE:一种新的大气污染物来源及输送情况的网格化分析方法[J]. 中国环境科学, 2019, 39(1): 106-117.
LIN Xu-dong, FU Xian-bin, KONG De-han, WANG Chun-ying, JING Chang-yong. TAGE:a new grid analysis method for source and transport of atmospheric pollutants. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(1): 106-117.
卢亚飞.MODIS气溶胶光学厚度与PM2.5浓度相关性分析[D]. 北京:北京建筑大学, 2015. Lu Y F. Research on the correlation between MODIS AOD and concentration of PM2.5 in Beijing[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2015.
[2]
许研,张炜,司一丹,等.利用高分一号数据反演并验证气溶胶光学厚度[J]. 遥感信息, 2016,31(5):62-67. Xu Y, Zhang W, Si Y D, et al. Retrieval and Validation of aerosol optical depth by using GF-1 remote sensing data[J]. Remote Sensing Information, 2016,31(5):62-67.
[3]
Zhang Y, Li Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation[J]. Remote Sensing of Environment, 2015,160:252-262.
[4]
Li Z, Zhang Y, Shao J, et al. Remote sensing of atmospheric particulate mass of dry PM2.5, near the ground:Method validation using ground-based measurements[J]. Remote Sensing of Environment, 2016,173:59-68.
[5]
赵爱梅,张莹,李正强,等.变异函数对泛克里金法的细粒子比星-地融合影响研究[J]. 地球信息科学学报, 2017,19(8):1089-1096. Zhao A M, Zhang Y, Li Z Q, et al. Impact of variogram parameters on merging satellite and ground-based FMF based on universal kriging[J]. Journal of Geo-Information Science, 2017,19(8):1089-1096.
[6]
李展,杨会改,蒋燕,等.北京市大气污染物浓度空间分布与优化布点研究[J]. 中国环境监测, 2015,31(1):74-78. Li Z, Yang H G, Jiang Y, et al. The study on spatial distribution of atmospheric contaminant concentrations and optimization of air quality monitoring sites in beijing City[J]. Environmental Monitoring in China, 2015,31(1):74-78.
[7]
刘家福,王鑫全,于茜,等.我国雾霾天气气候特征及影响因素分析[J]. 江苏农业科学, 2016,44(12):402-404. Liu J F, Wang X Q, Yu W, et al. Analysis of climatic characteristics and influencing factors of haze weather in China[J]. Jiangsu Agricultural Sciences, 2016,44(12):402-404.
[8]
梅杨,张文婷,杨勇,等.基于时空指示克里格的PM2.5不确定性分布[J]. 中国环境科学, 2018,38(1):35-43. Mei Y, Zhang W T, Yang Y, et al. Uncertainty assessment of PM2.5 probability mapping by using spatio-temporal indicator kriging[J]. China Environmental Science, 2018,38(1):35-43.
[9]
Chen L, Baili Z, Kong S, et al. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China[J]. Journal of Environmental Sciences, 2010,22(9):1364-1373.
[10]
Chen L, Shi Y, Zhi P, et al. Application of land use regression for estimating concentrations of major outdoor air pollutants in Jinan, China[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2010,11(11):857-867.
[11]
Li C, Wang Y, Li P, et al. A land use regression model incorporating data on industrial point source pollution[J]. Acta Scientiae Circumstantiae (English Version), 2012,24(7):1251-1258.
[12]
汉瑞英,陈健,王彬.利用LUR模型模拟杭州市PM2.5质量浓度空间分布[J]. 环境科学学报, 2016,36(9):3379-3385. Han R Y, Chen J, Wang B. Application of LUR models for simulating the spatial distribution of PM2.5 concentration in Hangzhou, China[J]. Acta Scientiae Circumstantiae, 2016,36(9):3379-3385.
[13]
Hopke P K, Gao N, Cheng M D. Combining chemical and meteorological data to infer source areas of airborne pollutants[J]. Chemometrics & Intelligent Laboratory Systems, 1993,19(2):187-199.
[14]
Seibert P, Kromp-Kolb H, Baltensperger U, et al. Trajectory analysis of aerosol measurements at high alpine sites[J]. Transport and Transformation of Pollutants in the Troposphere, 1994:689-693.
[15]
Hsu Y K, Holsen T M, Hopke P K. Comparison of hybrid receptor models to locate PCB sources in Chicago[J]. Atmospheric Environment, 2003,37(4):545-562.
[16]
朱书慧,周敏,乔利平,等.2015年12月气流轨迹对长三角区域细颗粒物浓度和分布的影响[J]. 环境科学学报, 2016,36(12):4285-4294. Zhu S H, Zhou M, Qiao L P, et al. Impact of the air mass trajectories on PM2.5 concentrations and distribution in the Yangtze River Delta in December 2015[J]. Acta Scientiae Circumstantiae, 2016,36(12):4285-4294.
[17]
刘娜,余晔,何建军,等.兰州冬季大气污染来源分析[J]. 环境科学研究, 2015,28(4):509-516. Liu N, Yu W, He J J, et al. Analysis of air pollutant transport in winter in Lanzhou[J]. Research of Environmental Sciences, 2015, 28(4):509-516.
[18]
Cai S, Wang Y, Zhao B, et al. The impact of the "Air Pollution Prevention and Control Action Plan" on PM2.5 concentrations in Jing-Jin-Ji region during 2012~2020[J]. Science of the Total Environment, 2016,580:197-209.
[19]
唐娴,王喜全,洪也,等.辽宁中部城市群一次灰霾天气过程的外来影响程度研究[J]. 环境科学学报, 2014,34(6):1541-1550. Tang X, Wang X Q, Hong Y, et al. A case study of regional contributions to the air quality in city clusters in Central Liaoning during a haze episode[J]. Acta Scientiae Circumstantiae, 2014,34(6):1541-1550.
[20]
黄思,唐晓,徐文帅,等.利用多模式集合和多元线性回归改进北京PM10预报[J]. 环境科学学报, 2015,35(1):56-64. Huang S, Tang X, Xu W S, et al. Application of ensemble forecast and linear regression method in improving PM10 forecast over Beijing areas[J]. Acta Scientiae Circumstantiae, 2015,35(1):56-64.
[21]
杨欣,陈义珍,赵妤希,等.2014~2017年北京城区霾污染态势及潜在来源[J]. 中国环境科学, 2018,38(9):3232-3239. Yang X, Chen Y Z, Zhao Y X, et al. Analysis of haze pollution situation and potential sources in Beijing urban area from 2014 to 2017[J]. China Environmental Science, 2018,38(9):3232-3239.
[22]
Xu X, Xie L, Cheng X, et al. Application of an adaptive nudging scheme in air quality forecasting in China[J]. Canadian Journal of Public Health=Revue Canadienne de Santé Publique, 2008,96(4):264-268.
[23]
Tombette M, Mallet V, Sportisse B. PM10 data assimilation over Europe with the optimal interpolation method[J]. Atmospheric Chemistry & Physics, 2009,9(1):57-70.
[24]
白晓平,李红,方栋,等.资料同化方法在空气污染数值预报中的应用研究[J]. 环境科学, 2008,29(2):283-289. Bai X P, Li H, Fang D, et al. Application research of data assimilation in air pollution numerical Prediction[J]. Environmental Science, 2008,29(2):283-289.
[25]
朱江,汪萍.集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用[J]. 大气科学, 2006,30(5):871-882. Zhu J, Wang P. Ensemble kalman smoother and ensemble kalman filter approaches to the joint air quality state and emission estimation problem[J]. Chinese Journal of Atmospheric Sciences, 2006,30(5):871-882.
[26]
Tang X, Zhu J, Wang Z F, et al. Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions[J]. Atmospheric Chemistry & Physics, 2011,11(3):7811-7849.
[27]
Tang X, Zhu J, Wang Z F, et al. Inversion of CO emissions over Beijing and its surrounding areas with ensemble Kalman filter[J]. Atmospheric Environment, 2013,81(4):676-686.
[28]
Mendoza-Dominguez A, Russell A G. Estimation of emission adjustments from the application of four-dimensional data assimilation to photochemical air quality modeling[J]. Atmospheric Environment, 2001,35(16):2879-2894.
[29]
陈军明,徐大海,朱蓉.遗传算法在点源扩散浓度反演排放源强中的应用[J]. 气象, 2002,28(9):12-16. Chen J M, Xu D H, Zhu R. Application of Genetic Algorithms to Point-source Inversion[J]. Meteorology Monthly, 2002,28(9):12-16.
[30]
冯帆,王自发,唐晓.一个基于打靶法的大气污染源反演自适应算法[J]. 大气科学, 2016,40(4):719-729. Feng F, Wang Z F, Tang X. Development of an adaptive algorithm based on the shooting method and its application in the problem of estimating air pollutant emissions[J]. Chinese Journal of Atmospheric Sciences, 2016,40(4):719-729.
[31]
佚名."2+26"城市[J]. 环境与生活, 2017,(10):41. Anonymous. "2+26" City[J]. Green Living, 2017,(10):41.
[32]
胡敏,唐倩,彭剑飞,等.我国大气颗粒物来源及特征分析[J]. 环境与可持续发展, 2011,36(5):15-19. Hu M, Tang Q, Peng J F, et al. Study on characterization and source apportionment of atmospheric particulate matter in China[J]. Environment and Sustainable Development, 2011,36(5):15-19.
[33]
陈云波.京津冀地区典型大气污染物区域来源解析的数值模拟研究[D]. 北京:中国环境科学研究院, 2016. Chen Y B. Numerical simulation of regional source analysis of typical atmospheric pollutants in Beijing-Tianjin-Hebei region[D]. Beijing:Chinese Academy of Environmental Sciences, 2016.
[34]
王春迎,潘本峰,吴修祥,等.基于大数据分析的大气网格化监测质控技术研究[J]. 中国环境监测, 2016,32(6):1-6. Wang C Y, Pan B F, Wu X X, et al. Research on quality control of atmospheric grid monitoring based on large data analysis[J]. Environmental Monitoring in China, 2016,32(6):1-6.