Abstract:Based on Prairie grass experiments, the differences in inversion performance from eight typical cost functions were systematically evaluated with metrics of accuracy, robustness and overestimation rate. It was found that substantial differences in the inversion performance presented cross models with different cost functions. In terms of single unknown source parameter inversion (only for source strength (Q)), the cost function based on logarithm transformation scheme had the highest overestimation rate (79.4%), and that associated with the sum of deviation squares scheme exhibited the best accuracy (PARD<50%=82.3%, ARD=(35.3±9.1)%); while no significant difference (CV<0.01) was found in the robustness from different cost functions. In terms of three unknown source parameter inversion (source strength (Q) and location (x, y)), the cost function based on normalized root mean square error scheme had the highest overestimation rate (98.5%) for source strength, the logarithm transformation cost function performed the best in the measure of accuracy and robustness (PARD<50%=91.1%, ARD=(48.4±9.8)%; CV=0.01); the cost function based on the sum of deviation squares scheme had the highest accuracy for the source location (AD=(36.12±11.39)m), while the logarithm transformation cost function showed the best robustness (CV=0.0018). In terms of four unknown source parameters inversion (source strength (Q) and location (x, y, z)), the cost function based on normalized root mean squared error exhibited the highest overestimation rate (98.5%) for source strength, and the logarithm transformation scheme got the best accuracy and robustness (PARD<50%=61.7%, ARD=(55.2±16.5)%; CV=0.03); the correlation coefficient scheme performed the best in accuracy and robustness for source location (AD=(34.37±10.72)m; CV=0.011). In general, the logarithm transformation cost function had the most stable inversion performance with the increase of the unknown source parameters.
胡峰, 郎建垒, 毛书帅, 玄博元. 典型优化目标函数下源参数反演性能对比研究[J]. 中国环境科学, 2021, 41(5): 2081-2089.
HU Feng, LANG Jian-lei, MAO Shu-shuai, XUAN Bo-yuan. Comparative study on source parameters inversion performance of typical cost functions. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(5): 2081-2089.
张建文,王煜薇,郑小平,等.基于混合遗传-Nelder Mead单纯形算法的源强及位置反算[J]. 系统工程理论与实践, 2011,31(8):1581-1587. Zhang J W, Wang L W, Zheng X P, et al. Back-calculation of source strength and position by a hybrid genetic-Nelder Mead simple algorithm[J]. Systems Engineering Theory and Practice, 2011,31(8):1581-1587.
[2]
Cui J, Lang J, Chen T, et al. Investigating the impacts of atmospheric diffusion conditions on source parameter identification based on an optimized inverse modelling method[J]. Atmospheric Environment, 2019,205(5):19-29.
[3]
沈泽亚,郎建垒,程水源,等.典型耦合优化算法在源项反演中的对比研究[J]. 中国环境科学, 2019,39(8):3207-3214. Shen Z Y, Lang J L, Cheng S Y, et al. Comparative and study on the application of typical hybrid algorithms in source parameter inversions[J]. China Environmental Science, 2019,39(8):3207-3214.
[4]
毛书帅,郎建垒,陈添,等.多情景源排放参数反演下典型优化算法性能对比[J]. 北京工业大学学报, 2020,46(4):45-52. Mao S S, Lang J L, Chen T, et al. Performance of typical optimization algorithms on inversing multi-scene source parameters[J]. Journal of Beijing University of Technology, 2020,46(4):45-52.
[5]
张久凤.基于监测数据的源强反算算法研究及应用[D]. 北京:中国石油大学, 2011. Zhang J F. Study and application of source intensity back-calculation algorithm based on monitoring data[D]. Beijing:China University of Petroleum, 2011.
[6]
Ma D, Gao J, Zhang Z, et al. An improved firefly algorithm for gas emission source parameter estimation in atmosphere[J]. IEEE Access, 2019,7(99):111923-111930.
[7]
Mao S, Lang J, Chen T, et al. Impacts of typical atmospheric dispersion schemes on source inversion[J]. Atmospheric Environment, 2020,232(7):117572.
[8]
Rodriguez L M, Haupt S E, Young G S. Impact of sensor characteristics on source characterization for dispersion modeling[J]. Measurement, 2011,44(5):802-814.
[9]
Long K J, Haupt S E, Young G S. Assessing sensitivity of source term estimation[J]. Atmospheric Environment, 2010,44(12):1558-1567.
[10]
Annunzio A J, Young G S, Haupt S E. A multi-entity field approximation to determine the source location of multiple atmospheric contaminant releases[J]. Atmospheric Environment, 2012,62(12):593-604.
[11]
Cervone G, Franzese R. Monte Carlo source detection of atmospheric emissions and error functions analysis[J]. Computers & Geosciences, 2010,36(7):902-909.
[12]
Ma D, Deng J, Zhang Z. Comparison and improvements of optimization methods for gas emission source identification[J]. Atmospheric Environment, 2013,81(12):188-198.
[13]
Barad M L. Project prairie grass:A field program in diffusion:AF-152572[R]. Geophysical Research Air Force Cambridge Research Laboratories, Bedford, 1958.
[14]
Ma D, Tan W. Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm[J]. Journal of Hazardous Materials, 2017,325(5):239-250.
[15]
Cervone G, Franzese P. Non-Darwinian evolution for the source detection of atmospheric releases[J]. Atmospheric Environment, 2011,45(26):4497-4506.
Chang J C, Hanna S R. Air quality model performance evaluation[J]. Meteorology & Atmospheric Physics, 2004,87(1-3):167-196.
[18]
Mao S, Lang J, Chen T, et al. Comparison of the impacts of empirical power-law dispersion schemes on simulations of pollutant dispersion during different atmospheric conditions[J]. Atmospheric Environment, 2020,224(3):117317.
[19]
Briggs G A. Diffusion estimation for small emissions:TID-28289[R]. National Oceanic and Atmospheric Administration, Oak Ridge, Tenn. USA, 1973.
[20]
曹宏桂,贠卫国.基于PSO-DE算法的突发水域污染溯源研究[J]. 中国环境科学, 2017,37(10):3807-3812. Cao H G, Yun W G. Research of the abrupt waters pollution source based on optimization algorithm of PSO-DE[J]. China Environmental Science, 2017,37(10):3807-3812.
[21]
张双圣,强静,刘汉湖,等.基于贝叶斯公式的地下水污染源识别[J]. 中国环境科学, 2019,39(4):1568-1578. Zhang S S, Qiang J, Liu H H, et al. Identification of groundwater pollution sources based on Bayes' theorem[J]. China Environmental Science, 2019,39(4):1568-1578.
[22]
潘紫东,卢文喜,范越,等.基于模拟-优化方法的地下水污染源溯源辨识[J]. 中国环境科学, 2020,40(4):1698-1705. Pan Z D, Lu W X, Fan Y, et al. Inverse Identification of groundwater pollution source based on simulation-optimization approach[J]. China Environmental Science, 2020,40(4):1698-1705.
[23]
唐穗欣.标准遗传算法的原理及算例[J]. 软件导刊, 2007,6(1):99-101. Tang S X. Principle and example of standard genetic algorithm[J]. Software Guide, 2007,6(1):99-101.
[24]
张丽平,俞欢军,陈德钊,等.粒子群优化算法的分析与改进[J]. 信息与控制, 2004,33(5):513-517. Zhang L P, Yu H J, Chen D Z, et al. Analysis and improvement of particle swarm optimization algorithm[J]. Information and Control, 2004,33(5):513-517.
[25]
Dai C, Chen W, Zhu Y, et al. Seeker Optimization algorithm for optimal reactive power dispatch[J]. IEEE Transactions on Power Systems, 2009,24(3):1218-1231.
[26]
Allen C T, Young G S, Haupt S E. Improving pollutant source characterization by better estimating wind direction with a genetic algorithm[J]. Atmospheric Environment, 2007,41(11):2283-2289.
[27]
吉志龙.基于遗传算法的气载核素大气扩散反演模型研究[D]. 上海:上海交通大学, 2014. Ji Z L. Study on back calculation of airborne radionuclides dispersion with genetic algorithm[D]. Shanghai:Shanghai Jiao Tong University, 2014.
[28]
董吉开,杜文莉,王冰,等.湍流状态下化学品扩散溯源中不同目标函数的影响分析[J]. 化工学报, 2020,71(3):1163-1173. Dong J K, Du W L, Wang B, et al. Investigating impacts of cost functions to atmospheric dispersion modeling and source term estimation in turbulent condition[J]. Journal of Chemical Industry and Engineering, 2020,71(3):1163-1173.
[29]
云慧敏,吴锋,殷勇,等.基于线性加权评价法的碟式斯特林机多目标优化[J]. 武汉工程大学学报, 2020,42(2):218-223,230. Yun H M, Wu F, Yin Y, et al, Multi-objective optimization of dish stirling engine based on linear weighted evaluation function method[J]. Journal of Wuhan Institute of Technology, 2020,42(2):218-223, 230.
[30]
Wade D, Senocak I. Stochastic reconstruction of multiple source atmospheric contaminant dispersion events[J]. Atmospheric Environment, 2013,74(8):45-51.
[31]
崔继宪.突发大气污染事故快速溯源与应急评估技术研究及验证[D]. 北京:北京工业大学, 2019. Cui J X. Research and verification of rapid traceability and emergency assessment technology for sudden air pollution accidents[D]. Beijing:Beijing University of Technology, 2019.
[32]
刘立群,韩俊英,代永强,等.果蝇优化算法优化性能对比研究[J]. 计算机技术与发展, 2015,25(8):94-98. Liu L Q, Han J Y, Dai Y Q, et al. Comparative study on optimization performance of fruit fly optimization algorithm[J]. Computer Technology and Development, 2015,25(8):94-98.
[33]
Wang Y, Huang H, Huang L, et al. Source term estimation of hazardous material releases using hybrid genetic algorithm with composite cost functions[J]. Engineering Applications of Artificial Intelligence, 2018,75(10):102-113.