Analysis on the characteristics of synergistic reduction of CO2 and O3 precursors emissions in China under carbon-neutral scenario
JIN Yu-xiang1, HOU Xue-wei1, HONG Lei2, ZHAO Tian-liang1, ZHOU Yi-chao1
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210000, China
Abstract:The study investigates the spatio-temporal dynamics of anthropogenic emissions in China under a carbon-neutral scenario, with a focus on synergistic reductions in carbon dioxide (CO2), volatile organic compounds (VOCs), and nitrogen oxides (NOx). Using the Dynamic Projection model for Emissions in China (DPEC), emissions trends were analyzed and compared with two Shared Socio-economic Pathway (SSP) scenarios (SSP1-1.9 and SSP1-2.6). The findings reveal that under the DPEC carbon-neutral scenario, CO2 emissions will peak by 2030 and decrease by 91% by 2060 relative to 2020 levels. Emissions of VOCs and NOx show continuous reductions since 2020, with declines of 65% and 88%, respectively, by 2060. Compared to the two SSP scenarios, the DPEC scenario shows a weaker reduction in VOCs but a stronger reduction in NOx. Sectoral analysis highlights that CO2 reductions primarily stem from the energy and industrial sectors, whereas the transportation sector drives notable decreases in VOCs and NOx. By 2060, the industrial sector will remain the dominant source of emissions for CO2, VOCs, and NOx. The results suggest that the DPEC carbon-neutral scenario aligns closely with China's future emission reduction trends, demonstrating significant potential for synergistic emission reductions. Achieving these targets on schedule will require robust policy implementation and sectoral commitment, offering substantial improvements in air quality and environmental outcomes.
金宇翔, 侯雪伟, 洪蕾, 赵天良, 周逸超. 碳中和情景下我国CO2与O3前体物协同减排特征分析[J]. 中国环境科学, 2025, 45(4): 2230-2239.
JIN Yu-xiang, HOU Xue-wei, HONG Lei, ZHAO Tian-liang, ZHOU Yi-chao. Analysis on the characteristics of synergistic reduction of CO2 and O3 precursors emissions in China under carbon-neutral scenario. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(4): 2230-2239.
[1] Zhai S, Jacob D J, Wang X, et al. Fine particulate matter (PM2.5) trends in China, 2013~2018:separating contributions from anthropogenic emissions and meteorology[J]. Atmospheric Chemistry and Physics, 2019,19(16):11031-11041. [2] Liu Z, Wild O, Doherty R M, et al. Benefits of net-zero policies for future ozone pollution in China[J]. Atmospheric Chemistry and Physics, 2023,23(21):13755-13768. [3] Liu Z, Doherty R M, Wild O, et al. Contrasting chemical environments in summertime for atmospheric ozone across major Chinese industrial regions:the effectiveness of emission control strategies[J]. Atmospheric Chemistry and Physics, 2021,21(13):10689-10706. [4] Wu S, Duncan B N, Jacob D J, et al. Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions[J]. Geophysical Research Letters, 2009,36,L05806. [5] Duncan B N, Yasuko Y, Jennifer R O, et al. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation[J]. Atmospheric Environment, 2010,44(18):2213-2223. [6] Wang W, Ronald van der A, Ding J, et al. Spatial and temporal changes of the ozone sensitivity in China based on satellite and ground-based observations[J]. Atmospheric Chemistry and Physics, 2021,21(9):7253-7269. [7] IPCC. Climate Change 2023:Synthesis Report. Contribution of Working Groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva, Switzerland:IPCC, 2023:184. [8] 徐北瑶,王体健,李树,等."双碳"目标对我国未来空气污染和气候变化的影响评估[J].科学通报, 2022,67(8):784-794. Xu B Y, Wang T J, Li S, et al. Assessment of the impact of "dual-carbon" goal on future changes in air pollution and climate in China[J]. Chinese Science Bulletin, 2022,67(8):784-794. [9] 丁一汇,李巧萍,柳艳菊,等.空气污染与气候变化[J].气象, 2009, 35(3):3-14. Ding Y H, Li Q P, Liu Y J, et al. Atmospheric aerosols, air pollution and climate change[J]. Meteorological Monthly, 2009,35(3):3-14. [10] 生态环境部.关于印发《减污降碳协同增效实施方案》的通知[EB/OL].[2022-06-13] . https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202206/t20220617_985879.html. Ministry of Ecology and Environment. Notice on the issuance of the" implementation plan for synergistic efficiency improvement of pollution reduction and carbon reduction"[EB/OL]. 2022-06-13. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202206/t20220617_985879.html. [11] Liu Y and Wang T. Worsening urban ozone pollution in China from 2013 to 2017-Part 1:The complex and varying roles of meteorology[J]. Atmospheric Chemistry and Physics, 2020,20(11):6305-6321. [12] Lu X, Zhang L, Shen L. Meteorology and climate influences on tropospheric ozone:a review of natural sources, chemistry, and transport patterns[J]. Current Pollution Reports, 2019,5(4):238-260. [13] Vuuren D P, Edmonds J, Kainuma M, et al. The representative concentration pathways:an overview[J]. Climatic Change, 2011, 109(1):5-31. [14] Keywan R, Van Vuuren D P, Elmar K, et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications:an overview[J]. Global Environmental Change, 2017, 42:153-168. [15] Kriegler E, Edmonds J, Hallegatte S, et al. A new scenario framework for climate change research:the concept of shared climate policy assumptions[J]. Climatic Change, 2014,122(3):401-414. [16] Gidden M J, Riahi K, Smith S J, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6:a dataset of harmonized emissions trajectories through the end of the century[J]. Geoscientific Model Development, 2019,12(4):1443-1475. [17] 张丽霞,陈晓龙,辛晓歌.CMIP6情景模式比较计划(ScenarioMIP)概况与评述[J].气候变化研究进展, 2019,15(5):519-525. Zhang L X, Chen X L, Xin X G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP)[J]. Advances in Climate Change Research, 2019,15(5):519-525. [18] 翁宇威,蔡闻佳,王灿.共享社会经济路径(SSPs)的应用与展望[J].气候变化研究进展, 2020,16(2):215-222. Weng Y W, Cai W J, Wang C. The application and future directions of the Shared Socioeconomic Pathways (SSPs)[J]. Advances in Climate Change Research, 2020,16(2):215-222. [19] Tong D, Cheng J, Liu Y, et al. Dynamic projection of anthropogenic emissions in China:methodology and 2015~2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios[J]. Atmospheric Chemistry and Physics, 2020,20(9):5729-5757. [20] Cheng J, Tong D, Liu Y, et al. A synergistic approach to air pollution control and carbon neutrality in China can avoid millions of premature deaths annually by 2060[J]. One Earth, 2023,6(8):978-989. [21] Van Vuuren D P, Elke S, David E H J G, et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm[J]. Global Environmental Change, 2017,42:237-250. [22] Rogelj J, Popp A, Calvin K V, et al. Scenarios towards limiting global mean temperature increase below 1.5℃[J]. Nature Climate Change, 2018,8:325-332. [23] 梁小明,陈来国,沈国锋,等.中国生活源挥发性有机物排放清单[J].环境科学, 2021,42(11):5162-5168. Liang X M, Chen L G, Shen G F, et al. Volatile Organic Compounds (VOCs) emission inventory from domestic sources in China[J]. Environmental Science, 2021,42(11):5162-5168. [24] Li X, Yan X. Fast penetration of electric vehicles in China cannot achieve steep cuts in air emissions from road transport without synchronized renewable electricity expansion[J]. Energy, 2024,301, 131737. [25] 金之钧,张川.面向碳中和的中国能源转型路径思考[J].北京大学学报自然科学版, 2024,60(4):767-774. Jin Z J, Zhang C. On China's energy transition pathway towards carbon neutrality[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2024,60(4):767-774. [26] Duan H, Zhou S, Jiang K, et al. Assessing China's efforts to pursue the 1.5℃ warming limit[J]. Science, 2021,372(6540):378-385. [27] 李双成,王巧玲,刘迎陆."双碳"目标下的中国可再生能源发展:机遇与挑战[J].气候与环境研究, 2024,29(3):390-398. Li S C, Wang Q L, Liu Y L. Renewable energy development in China under dual carbon goal:Opportunities and Challenges[J]. Climatic and Environmental Research, 2024,29(3):390−398. [28] 张智刚,康重庆.碳中和目标下构建新型电力系统的挑战与展望[J].中国电机工程学报, 2022,42(8):2806-2819. Zhang Z G, Kang C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022,42(8):2806-2819. [29] 黄雨涵,丁涛,李雨婷,等.碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J].中国电机工程学报,2021,41(S1):28-51. Huang Y H, Ding T, Li Y T, et al. Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021,41(S1):28-51.