Driving factors and spatio-temporal distribution on NO2 and CO2 in the Yangtze River Delta
HE Yue1, SHENG Meng-ya2,3, LEI Li-ping2, GUO Kai-yuan2,3, HE Zhong-hua1, CAI Ju-zhen1, FANG He1, ZHANG Xiao-wei1, LIU Ying1, ZHANG Yu-hui1
1. Zhejiang Province Climate Center, Hangzhou 310052, China; 2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Beijing 100094, China; 3. Chinese Academy of Sciences, Beijing 100094, China
Abstract:In this paper, with the Yangtze River Delta urban agglomerations as the study area, the satellite remote sensing data were used to carry out collaborative analysis on the temporal and spatial variations of atmospheric NO2 and CO2 concentrations and the driving factors, which revealed the areas with high concentrations of air pollution and CO2. The results indicated that the spatio-temporal distributions of NO2 and CO2 and its changing characteristics in the Yangtze River Delta urban agglomeration areas were subjected to the combined effects of human activities such as fossil fuel combustion and vehicle emissions, as well as natural conditions such as regional topography, regional topography, surface coverage and climate. The areas with high concentrations of atmospheric NO2 and CO2 were in an U-shaped distribution towards the southwest direction around Taihu Lake, which was consistent with the distribution of the surrounding large urban areas and the industrial emission areas. Featured with seasonal distribution characteristics, the atmospheric NO2 concentrations were higher in autumn and winter, and the lowest in summer. Affected by vegetation CO2 uptake and CO2 emission accumulation, atmospheric CO2 concentrations were the lowest in August-September and the highest in April-May. In addition, with the sharp reduction in anthropogenic emission activities from January to March 2020, NO2 concentrations were reduced by more than 50% compared with the same period in 2019 and dropped the most in cities with large-scale ferrous-metal and coal-processing industrial heat sources.
何月, 绳梦雅, 雷莉萍, 郭开元, 贺忠华, 蔡菊珍, 方贺, 张小伟, 刘樱, 张育慧. 长三角地区大气NO2和CO2浓度的时空变化及驱动因子分析[J]. 中国环境科学, 2022, 42(8): 3544-3553.
HE Yue, SHENG Meng-ya, LEI Li-ping, GUO Kai-yuan, HE Zhong-hua, CAI Ju-zhen, FANG He, ZHANG Xiao-wei, LIU Ying, ZHANG Yu-hui. Driving factors and spatio-temporal distribution on NO2 and CO2 in the Yangtze River Delta. CHINA ENVIRONMENTAL SCIENCECE, 2022, 42(8): 3544-3553.
许艳玲,薛文博,雷宇.气象和排放变化对PM2.5污染的定量影响[J]. 中国环境科学, 2019,39(11):4546-4551. Xu, Y L, Xue W B, Lei Y. Impact of meteorological conditions and emission change on PM2.5 pollution in China[J]. China Environmental Science, 2019,39(11):4546-4551.
[2]
范丹,梁佩凤,刘斌.雾霾污染的空间外溢与治理政策的检验分析[J]. 中国环境科学, 2020,40(6):2741-2750. Fan D, Liang P F, Liu B. An analysis of the spatial spillover of smog pollution and policy testing[J]. China Environmental Science, 2020, 40(6):2741-2750.
[3]
Richter A, Burrows J, Nüß H, et al. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature, 2005,437:129-132.
[4]
杨强,马千里,姚波,等.唐山上空CO2和CO浓度特征的飞机探测研究[J]. 中国环境科学, 2020,40(4):1460-1467. Yang Q, Ma Q L, Yao B, et al. The characteristic of atmospheric CO2 and CO concentrations based on aircraft observation over Tangshan[J]. China Environmental Science, 2020,40(4):1460-1467.
[5]
WMO. WMO Greenhouse Gas Bulletin No.14[EB/OL]. https://library.wmo.int/doc_num.php?explnum_id=5455.
[6]
王绍武, 叶瑾琳. 近百年全球气候变暖的分析[J]. 大气科学, 1995, 19(5):545-553. Wang S W, Ye J L. An Analysis of Global Warming during the Last One Hundred Years[J]. Scientia Atmospherica Sinica,
[6]
1995,19(5):545-553.
[7]
毛显强,邢有凯,高玉冰,等.温室气体与大气污染物协同控制效应评估与规划[J]. 中国环境科学, 2021,41(7):3390-3398. Mao X Q, Xing Y K, Gao Y B, et al. Study on GHGs and air pollutants co-control:assessment and planning[J]. China Environmental Science, 2021,41(7):3390-3398.
[8]
Beirle S, Boersma K F, Platt U, et al. Megacity emissions and lifetimes of Nitrogen Oxides Probed from Space[J]. Science, 2011,333(6050):1737-1739.
[9]
Hsueh Y H, Li K F, Lin L C, et al. East Asian CO2 level change caused by Pacific Decadal Oscillation[J]. Remote Sensing of Environment, 2021,264:112624.
[10]
Kort E A, Frankenberg C, Miller C E, et al. Space-based observations of megacity carbon dioxide[J]. Geophysical Research Letters, 2012, 39(17):17806.
[11]
雷莉萍,钟惠,贺忠华,等.人为排放所引起大气CO2浓度变化的卫星遥感观测评估[J]. 科学通报, 2017,62(25):2941-2950. Lei L P, Zhong H, He Z H, et al. Assessment of atmospheric CO2 concentration enhancement from anthropogenic emissions based on satellite observations (in Chinese)[J]. Chinese Science Bulletin, 2017,62(25):2941-2950.
[12]
Park H, Jeong S, Park H, et al. An assessment of emission characteristics of Northern Hemisphere cities using spaceborne observations of CO2, CO and NO2[J]. Remote Sensing of Environment, 2021,254:112246.
[13]
Reuter M, Buchwitz M, Schneising O, et al. Towards monitoring localized CO2 emissions from space:co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites[J]. Atmospheric Chemistry and Physics, 2019,19(14):9371-9383.
[14]
李旭文,张悦,姜晟,等."哨兵-5P"卫星TROPOMI传感器在江苏省域大气污染监测中的初步应用[J]. 环境监控与预警, 2019, 11(2):10-16. Li X W, Zhang Y, Jiang S, et al. Preliminary application of atmospheric pollution monitoring in Jiangsu Province with TROPOMI Sensor onboard Sentinel-5P satellite[J]. Environmental Monitoring and Forewarning, 2019,11(2):10-16.
[15]
LI X W, Zhang Y, Jiang S, et al. Preliminary application of atmospheric pollution monitoring in Jiangsu Province with TROPOMI sensor onboard Sentinel-5P satellite[J]. Environmental Monitoring and Forewarning, 2019,11(2):10-16.
[16]
王英,李令军,刘阳.京津冀与长三角区域大气NO2污染特征[J]. 环境科学, 2012,33(11):3685-3692. Wang Y, Li L J, Liu Y. Characteristics of atmospheric NO2 in the Beijing-Tianjin-Hebei region and the Yangtze River Delta analyzed by satellite and ground observations[J]. Environmental science, 2012,33(11):3685-3692.
[17]
章吴婷,张秀英,刘磊,等.多源卫星遥感的华北平原大气NO2浓度时空变化[J]. 遥感学报, 2018,22(2):335-346. Zhang W T, Zhang X Y, Liu L, et al. Spatial variations in NO2 trend in North China Plain based on multi-source satellite remote sensing[J]. Journal of Remote Sensing, 2018,22(2):335-346.
[18]
Lei L P, Zhong H, He Z H, et al. Assessment of atmospheric CO2 concentration enhancement from anthropogenic emissions based on satellite observations[J]. Chinese Science Bulletin, 2017,62(25):2941-2950.
[19]
郑子豪,吴志峰,陈颖彪,等.基于Sentinel-5P的粤港澳大湾区NO2污染物时空变化分析[J]. 中国环境科学, 2021,41(1):63-72. Zheng Z H, Wu Z F, Chen Y B, et al. Analysis of temporal and spatial variation characteristics of NO2 pollutants in Guangdong-Hong Kong-Macao Greater Bay Area based on Sentinel-5P satellite data[J]. China Environmental Science, 2021,41(1):63-72.
[20]
Zheng B, Geng G, Ciais P, et al. Satellite-based estimates of decline and rebound in China's CO2 emissions during COVID-19pandemic[J]. Science Advances, 2020,6(49):eabd4998.
[21]
Kumari P, Toshniwal D. Impact of lockdown measures during COVID-19 on air quality-A case study of India[J]. International Journal of Environmental Health Research, 2022,32(3):503-510.
[22]
Buchwitz M, Reuter M, Noël S, et al. Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals[J]. Atmospheric Measurement Techniques, 2021,14(3):2141-2166.
[23]
Liang M, Zhang Y, Ma Q, et al. Dramatic decline of observed atmospheric CO2 and CH4 during the COVID-19 lockdown over the Yangtze River Delta of China[J]. Journal of Environmental Sciences, 2023,124:712-721.
[24]
易睿,王亚林,张殷俊,等.长江三角洲地区城市臭氧污染特征与影响因素分析[J]. 环境科学学报, 2015,35(8):2370-2377. Yi R, Wang Y L, Zhang Y J, et al. Pollution characteristics and influence factors of ozone in Yangtze River Delta[J]. Acta Scientiae Circumstantiae, 2015,35(8):2370-2377.
[25]
陆燕,王勤耕,翟一然,等.长江三角洲城市群人为热排放特征研究[J]. 中国环境科学, 2014,34(2):295-301. Lu Y, Wang Q G, Zhai Y R, et al. Anthropogenic heat emissions in the Yangtze River Delta region[J]. China Environmental Science, 2014, 34(2):295-301.
[26]
郭政,陈爽,董平,等.长江三角洲城市群工业污染时空演化及其驱动因素[J]. 中国环境科学, 2019,39(3):1323-1335. Guo Z, Chen S, Dong P, et al. Spatial-temporal evolution of industrial pollution in the Yangtze River Delta urban agglomeration and its driving factors[J]. China Environmental Science, 2019,39(3):1323-1335.
[27]
刘立新,夏玲君,周凌晞.我国长三角和京津冀城市群大气温室气体特征对比分析[C]//第33届中国气象学会年会S11大气成分与天气,气候变化及环境影响, 2016. Liu L X, Xia L J, Zhou L X. Comparative analysis of atmospheric greenhouse gas characteristics in the Yangtze River Delta and Beijing-Tianjin-Hebei urban agglomeration[C]//S11Atmospheric Composition and Weather, Climate Change and Environmental Impact, the 33rd Annual Meeting of the Chinese Meteorological Society, 2016.
[28]
Saw G K, Dey S, Kaushal H, et al. Tracking NO2 emission from thermal power plants in North India using TROPOMI data[J]. Atmospheric Environment, 2021,259:118514.
[29]
Sentinel-5P OFFL NO2:Offline Nitrogen Dioxide. Available online:https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_NO2 (accessed on 15February 2021).
[30]
Sentinel-5P TROPOMI NO2 Data Products. Available online:http://www.tropomi.eu/data-products/nitrogen-dioxide (accessed on 15February 2021).
[31]
Crisp D, Frankenberg C, Messerschmidt J, et al. The ACOS CO2 retrieval algorithm-Part II:Global XCO2 data characterization[J]. Atmospheric Measurement Techniques, 2012,5(4):687-707.
[32]
Janne H, Ialongo I, Maksyutov S, et al. Analysis of Four years of global XCO2 anomalies as seen by Orbiting Carbon Observatory-2[J]. Remote Sensing, 2019,11(7):850.
[33]
Sheng S M, Lei L, Zeng Z C, et al. Detecting the responses of CO2 column abundances to anthropogenic emissions from satellite observations of GOSAT and OCO-2[J]. Remote Sensing, 2021,13(17):3524.
[34]
Goddard Earth Science Data Information and Services Center (GES DISC) at National Aeronautics and Space Administration (NASA). Available online:https://oco2.gesdisc.eosdis.nasa.gov/data/(accessed on 19 January 2021).
[35]
国家基础地理信息中心(http://www.globallandcover.com/). National Basic Geographic Information Center (http://www. globallandcover.com/).
Liu Y, Hu C, Zhan W, et al. Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach[J]. Remote Sensing of Environment, 2018,204:347-365.
[39]
Oda T, Maksyutov S. A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights[J]. Atmospheric Chemistry amd Physics, 2011,11(2):543-556.
[40]
Nakajima M, Kuze A, Suto H. The current status of GOSAT and the concept of GOSAT-2[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2012,8533,10.
[41]
Oda T, Maksyutov S, Andres R J. The Open-source Data Inventory for Anthropogenic CO2, version 2016(ODIAC2016):A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions[J]. Earth System Science Data, 2018,10(1):87-107.
[42]
Zeng Z C, Lei L, Hou S, et al. A regional gap-filling method based on spatiotemporal variogram model of columns[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(6):3594-3603.
[43]
Zeng Z C, Lei L, Strong K, et al. Global land 1mapping dataset of XCO2 from satellite observations of GOSAT and OCO-2 from 2009 to 2020[J]. International Journal of Digital Earth, 2017,10(4):426-456.
[44]
He Z, Lei L, Zhang Y, et al. Spatio-temporal mapping of multi-satellite observed column atmospheric CO2 using precision-weighted kriging method[J]. Remote Sensing, 2020,12(3):576.
[45]
Sheng S M, Lei L, Zeng Z C, et al. Detecting the responses of CO2 column abundances to anthropogenic emissions from satellite observations of GOSAT and OCO-2[J]. Big Earth Data, 2022,DOI:10.1080/20964471.2022.2033149.
[46]
Yokota T N, Eguchi Y Y, Ota Y, et al. Global Concentrations of CO2 and CH4retrieved from GOSAT:first preliminary results[J]. Scientific Online Letters on the Atmosphere, 2009,5:160-163.
[47]
Lindqvist H, O"Dell C W, Basu S, et al. Does GOSAT capture the true seasonal cycle of carbon dioxide?[J]. Atmospheric Chemistry and Physics, 2015,15(22):13023-13040.
[48]
Eldering A, O'Dell C W, Wennberg P O, et al.The Orbiting Carbon Observatory-2:First 18months of science data products[J]. Atmospheric Measurement Techniques, 2017,10(2):549-563.
[49]
Le Quéré C, Jackson R B, Jones M W, et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement[J]. Nature Climate Change, 2020,10:647-653.
[50]
张楚莹,王书肖,邢佳,等.中国能源相关的氮氧化物排放现状与发展趋势分析[J]. 环境科学学报, 2008,28(12):2470-2479. Zhang C Y, Wang S X, Xing J, et al. Current status and future projections of NOx emission from energy related industries in China[J]. Acta Scientiae Circumstaniae, 2008,28(12):2470-2479.
[51]
Yang S, Lei L, Zeng Z, et al. An assessment of anthropogenic CO2 emissions by satellite-based observations in China[J]. Sensors, 2019, 19(5):1118.