Abstract:A novel inversion algorithm based on an optimization approach for river point pollution sources was developed. Mass transport and kinetics processes of the contaminants in surface waters were combined along with the discharge history. And other relative parameters were deduced under the scenario that singular source instantly discharges degradable and soluble chemicals into one-dimensional rivers. A series of numerical experiments were carried out based on the hypothetic cases to analyze inversion effects associated with ambient river flow rates, contaminant decay rates, monitoring sites setting, sampling data errors and time intervals between two groups of sampling. When the monitoring time interval was less than 10 minutes and sampling data errors were controlled fewer than 5% approximately, the relative errors of pollution source location, total released mass and synthetical relative error are under 4%, 4% and 2%, respectively. Results show that parameters calculated fit well with the real values. In addition, the algorithms had the advantages such as efficient sampling process, minimum data requirement as well as easy programming. It was worthwhile to utilize this method for emergency environmental management practices.