Abstract:An aerobic granular sludge reactor was run for 160 days to study the effectiveness of selective sludge discharge as a control strategy to improve the long-term stability of nitritation process. The reactor operation could be divided into three phases. During phase one the solid retention time (SRT, was extremely high) was controlled by sludge washed-out spontaneously with effluent withdrawal, leading to granules disaggregated and nitritation performance deteriorated. Sludge was selectively removed from the top of the settled sludge bed to control SRT which resulted in an increased specific NO2--N accumulation rate from 7.44 to 8.08mg/(g·h) in phase two [SRT=(45±5) d], and then reached as high as 9.14mg/(g·h) in phase three [SRT=(30±5)d]. On the contrary, the specific NO3--N production rate decreased from 3.01mg/(g·h) to 1.54mg/(g·h) when SRT was (30±5) days. The ratio of nitrite accumulation in effluent reached above 80% during phase three. All these results demonstrated that controlling SRT by selectively biomass discharge was an effective strategy to improve the long-term stability of nitritation process. Additionally, analysis suggest that using reactor with large height-diameter ratio and introducing competitors with nitrite oxidizing bacteria (NOB) for nitrite can both improve the implementation of selective sludge discharge-control strategy for nitritation.