The start-up and performance of denitrifying phosphorus removal process in a post-anoxic SBR system
ANG Jie1, LI Dong1, LUO Ya-hong2, LI Xiao-ying1, ZENG Hui-ping1, ZHANG Jie1,3
1. Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China;
2. Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, College of the Environment, Henan Normal University, Xinxiang 453007, China;
3. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
In order to realize efficient simultaneous nitrogen and phosphorus removal in domestic wastewater, a post-anoxic SBR system was used. The results showed that the denitrifying phosphorus removal process was launched in 39days by firstly shortening the SRT to enrich phosphorus accumulating organisms (PAOs), and then extending the SRT and introducing the anoxic phase. COD, TP, NH4+-N and TN removal efficiency were 92.9%, 98.4%, 100% and 98.4%, respectively. The effect of influent carbon-nitrogen ratio (C/N) was also investigated. There was no obvious change on nitrogen and phosphorus removal efficiency when the decrease of C/N was below 17.65% in a short term. When it exceeded 33.3%, the system had a bad performance on both nitrogen and phosphorus removal, but in the long run, the effluent COD concentration fell, and the proportion of denitrifying phosphorus accumulating organisms (DPAOs) in PAOs increased, which supplemented the removal efficiency of decline to some extent. The cycle test indicated that pH and DO can be the real-time control parameters which decided whether the anaerobic phosphorus release and the cycle ended or not. The reaction time and energy consumption of aeration could be reduced significantly.
杨杰, 李冬, 罗亚红, 李晓莹, 曾辉平, 张杰. SBR后置缺氧反硝化除磷的启动及去除性能[J]. 中国环境科学, 2016, 36(5): 1376-1383.
ANG Jie, LI Dong, LUO Ya-hong, LI Xiao-ying, ZENG Hui-ping, ZHANG Jie. The start-up and performance of denitrifying phosphorus removal process in a post-anoxic SBR system. CHINA ENVIRONMENTAL SCIENCECE, 2016, 36(5): 1376-1383.
Xu X, Liu G, Zhu L. Enhanced denitrifying phosphorous removal in a novel anaerobic/aerobic/anoxic (AOA) process with the diversion of internal carbon source [J]. Bioresource Technology, 2011,102(22):10340-10345.
[3]
Ma Y, Peng Y, Wang X. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal [J]. Desalination, 2009,246(1-3):534-544.
[4]
Zhou Y, Pijuan M, Yuan Z. Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms [J]. Water Research, 2008,42(12):3207-3217.
[5]
Carvalho G, Lemos P C, Oehmen A, et al. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure [J]. Water Research, 2007,41(19): 4383-4396.
[6]
Zeng W, Wang X D, Li B X, et al. Nitritation and denitrifying phosphorus removal via nitrite pathway from domestic wastewater in a continuous MUCT process [J]. Bioresource Technology, 2013,143:187-195.
[7]
Zeng R J, Lemaire R, Yuan Z, et al. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor [J]. Biotechnology and Bioengineering, 2003,84(2): 170-178.
[8]
Park J B, Lee H W, Lee S Y, et al. Microbial community analysis of 5-stage biological nutrient removal process with step feed system [J]. Journal of Microbiology and Biotechnology, 2002, 12(6):929-935.
[9]
Singh M, Srivastava R K. Sequencing batch reactor technology for biological wastewater treatment: A review [J]. Asia-Pacific Journal of Chemical Engineering, 2011,6(1):3-13.
Marcelino M, Wallaert D, Guisasola A, et al. A two-sludge system for simultaneous biological C, N and P removal via the nitrite pathway [J]. Water Science and Technology, 2011,64(5): 1142-1147.
[13]
Wang Y, Peng Y, Stephenson T. Effect of influent nutrient ratios and hydraulic retention time (HRT) on simultaneous phosphorus and nitrogen removal in a two-sludge sequencing batch reactor process [J]. Bioresource Technology, 2009,100(14):3506-3512.
[14]
Kapagiannidis A G, Zafiriadis I, Aivasidis A. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic-anoxic activated sludge system [J]. Bioprocess and Biosystems Engineering, 2012,35(3):371-382.
Wachtmeister A, Kuba T, Van Loosdrecht M, et al. A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge [J]. Water Research, 1997,31(3):471-478.
[18]
GB18918—2002 城镇污水处理厂污染物排放标准 [S].
[19]
Wang Y, Jiang F, Zhang Z, et al. The long-term effect of carbon source on the competition between polyphosphorus accumulating organisms and glycogen accumulating organism in a continuous plug-flow anaerobic/aerobic (A/O) process [J]. Bioresource Technology, 2010,101(1):98-104.
[20]
Liu L, Tang B, Huang S, et al. Rapid enrichment and cultivation of denitrifying Phosphate-Removal bacteria and its identification by fluorescence in situ hybridization technology [J]. Huanjing Kexue, 2013,34(7):2869-2875.
Wang Y, Geng J, Ren Z, et al. Effect of COD/N and COD/P ratios on the PHA transformation and dynamics of microbial community structure in a denitrifying phosphorus removal process [J]. Journal of Chemical Technology and Biotechnology, 2013,88(7):1228-1236.
[25]
Zhang C Y, Zhang H M, Yang F L. Optimal cultivation of simultaneous ammonium and phosphorus removal aerobic granular sludge in A/O/A sequencing batch reactor and the assessment of functional organisms [J]. Environmental Technology, 2014,35(15):1979-1988.
Zhu R L, Wang S Y, Li J, et al. Effect of influent C/N ratio on nitrogen removal using PHB as electron donor in a post-denitritation SBR [J]. Journal of Chemical Technology and Biotechnology, 2013,88(10):1834-1905.
[28]
Bu F, Hu X, Xie L, et al. Cassava stillage and its anaerobic fermentation liquid as external carbon sources in biological nutrient removal [J]. Journal of Zhejiang University-Science B, 2015,16(4):304-316.
[29]
Tsuneda S, Ohno T, Soejima K, et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor [J]. Biochemical Engineering Journal, 2006,27(3):191-196.