1. Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China;
2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
In order to investigate different anoxic/aerobic ratio on stability of partial nitritation (PN), continuous flow reactor was used at room temperature (22~25℃). After complete nitritation (CN) was achieved through controlling FA and DO (0.3~0.5mg/L), the effluent of Anaerobic/Oxic(A/O) process removing phosphorous wastewater was used as influent to CN. Then, CN turned to PN gradually. The influence of different anoxic/aerobic volume ratios (0:1,1:1,2:1,3:1) on stability of PN was investigated. It demonstrated that PN was difficult to mantain when treating domestic sewage containing low ammonia nitrogen (40~70mg/L) at the ratio of 0:1.However, stable PN could be maintained when the ratios were 1:1, 2:1 and 3:1. The ratio of 3:1 was more efficient than the others. In the process of 0:1, 1:1, 2:1 and 3:1, ammonia utilization rate increased by 29.57%、44.27%、45.23%、49.63%, respectively. During the whole operating period, the settleability of sludge was good with volume Index (SVI) being 65~130mL/g.
Schmidt I, Sliekers O, Schmid M, et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater [J]. Fems Microbiology Reviews, 2006,27(4):481-492.
[2]
Bayat M, Hamidi M, Dehghani Z, et al. Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems [J]. Water Research, 2010,44(20):6073-6084.
[3]
Kartal B, Kuenen J G, Loosdrecht M C M V. Sewage Treatment with Anammox [J]. Science, 2010,328(5979):702-703.
[4]
Gabarró J, Ganigué R, Gich F, et al. Effect of temperature on AOB activity of a partial nitritation SBR treating landfill leachate with extremely high nitrogen concentration [J]. Bioresource Technology, 2012,126C(6):283-289.
Peng Y, Zhang S, Zeng W, et al. Organic removal by denitritation and methanogenesis and nitrogen removal by nitritation from landfill leachate [J]. Water Research, 2008,42(s4/5):883-892.
[7]
Guo J H, Peng Y Z, Wang S Y, et al. Effective and robust partial nitrification to nitrite by real-time aeration duration control in an SBR treating domestic wastewater [J]. Process Biochemistry, 2009,44(9):979-985.
[8]
Li J, Elliott D, Nielsen M, et al. Long-term partial nitrification in an intermittently aerated sequencing batch reactor (SBR) treating ammonium-rich wastewater under controlled oxygen-limited conditions [J]. Biochemical Engineering Journal, 2011,55(3): 215-222.
[9]
Ge S, Agbakpe M, Zhang W, et al. Heteroaggregation between PEI-coated magnetic nanoparticles and algae: effect of particle size on algal harvesting efficiency [J]. Acs Applied Materials & Interfaces, 2015,7(11):623-629.
Wei Z, Lei L, Yang Y, et al. Nitritation and denitritation of domestic wastewater using a continuous anaerobic-anoxic- aerobic (A2O) process at ambient temperatures [J]. Bioresource Technology, 2010,101(21):8074-8082.
[12]
Ruiz G, Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. [J]. Water Research, 2003,37(6):1371-1377(7).
[13]
Kornaros M, Dokianakis S N, Lyberatos G. Partial nitrification/denitrification can be attributed to the slow response of nitrite oxidizing bacteria to periodic anoxic disturbances. [J]. Environmental Science & Technology, 2010,44(19):7245-7253.
[14]
Katsogiannis A N, Kornaros M, Lyberatos G ,. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs. [J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2003,47(11):53-59.
[15]
Dytczak M A, Londry K L, Oleszkiewicz J A. Activated sludge operational regime has significant impact on the type of nitrifying community and its nitrification rates [J]. Water Research, 2008, 42(8/9):2320-2328.
Turk O, Mavinic D S. Preliminary assessment of a shortcut in nitrogen removal from wastewater [J]. Canadian Journal of Civil Engineering, 1986,13(13):600-605.
[20]
Katsogiannis A N, Kornaros M, Lyberatos G. Long-term effect of total cycle time and aerobic/anoxic phase ratio on nitrogen removal in a sequencing batch reactor. [J]. Water Environment Research A Research Publication of the Water Environment Federation, 2002,74(4):324-337.
[21]
Katsogiannis A N, Kornaros M, Lyberatos G.. Enhanced nitrogen removal in SBRs bypassing nitrate generation accomplished by multiple aerobic/anoxic phase pairs. [J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2003,47(11):53-59.
[22]
Bournazou M N C, Hooshiar K, Arellano-Garcia H, et al. Model based optimization of the intermittent aeration profile for SBRs under partial nitrification [J]. Water Research, 2013,47(10):3399-3410.
[23]
Sadana, A Enzyme deactivation. Biotechnology Advance., 1988,6:349-446;IN1-IN2.
Paredes D, Kuschk P, Mbwette T S A, et al. New Aspects of Microbial Nitrogen Transformations in the Context of Wastewater Treatment - A Review [J]. Engineering in Life Sciences, 2007, 7(1):13-25.
Musvoto E V, Lakay M T, Casey T G, et al. Filamentous organism bulking in nutrient removal activated sludge systems. Paper 8: The effect of nitrate and nitrite [J]. Water S A, 1999,25(4):397-407.