Study on spatio-temporal dynamics of vegetation carbon use efficiency and its response to climate factors in Three-River Headwaters Region
ZHENG Fei-ge1, YI Gui-hua2, ZHANG Ting-bin1,3, LI Jing-ji4,5, BIE Xiao-juan1, LIU Dong1, QIN Yi1, ZHANG Tian-tian1
1. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China;
2. College of Management Science, Chengdu University of Technology, Chengdu 610059, China;
3. The Engineering & Technical College of Chengdu University of Technology, Leshan 614000, China;
4. College of Environmental and Civil Engineering Institute, Chengdu University of Technology, Chengdu 610059, China;
5. Institute of Ecological Resource and Landscape, Chengdu University of Technology, Chengdu 610059, China
Based on MODIS Gross Primary Production (GPP)/Net Primary Production (NPP) data, the carbon utilization efficiency (CUE) of vegetation in Three-River Headwaters region was calculated. Combined with the meteorological data and elevation data, the spatiotemporal distribution characteristics of vegetation CUE were investigated from 2001 to 2017 with the linear regression method. The response of vegetation CUE to air temperature, precipitation and evapotranspiration in the study area were further analyzed by using the methods of correlation analysis. The results showed that:(1) the vegetation CUE in the Three-River Headwaters region was first increasing and then decreasing with the peak in June during the active period between March and October each year from 2001 to 2017. (2) The annual vegetation CUE in the Three-River Headwaters region was ranging between 0.73 and 1.00, with an average of 0.85. Spatially, the vegetation CUE was higher in the north and west, but lower in the south and east in the study area. (3) The vegetation CUE was found to be positively correlated with air temperature, but negatively correlated with precipitation and evapotranspiration between April and October. On an annual basis, the CUE was more sensitive to precipitation than air temperature, but least sensitive to evapotranspiration.
郑飞鸽, 易桂花, 张廷斌, 李景吉, 别小娟, 刘栋, 覃艺, 张甜甜. 三江源植被碳利用率动态变化及其对气候响应[J]. 中国环境科学, 2020, 40(1): 401-413.
ZHENG Fei-ge, YI Gui-hua, ZHANG Ting-bin, LI Jing-ji, BIE Xiao-juan, LIU Dong, QIN Yi, ZHANG Tian-tian. Study on spatio-temporal dynamics of vegetation carbon use efficiency and its response to climate factors in Three-River Headwaters Region. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(1): 401-413.
Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010,3(5):336-340.
[2]
Manzoni S, Taylor P, Richter A. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils[J]. New Phytologist, 2012,196(1):79-91.
[3]
Landsberg J J, Waring R H. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning[J]. Forest Ecology and Management, 1997,95(3):209-228.
[4]
Choudhury B J. Modeling radiation-and carbon-use efficiencies of maize, sorghum, and rice[J]. Agricultural and Forest Meteorology, 2001,106(4):317-330.
[5]
Bradford M A, Crowther T W. Carbon use efficiency and storage in terrestrial ecosystems[J]. New Phytologist, 2013,199(1):7-9.
[6]
唐红玉,肖风劲,张强,等.三江源区植被变化及其对气候变化的响应[J]. 气候变化研究进展, 2006,2(4):177-180. Tang H Y, Xiao F J, Zhang Q, et al. Vegetation change and its response to climate change in Three-River Source Region[J]. Advances in Climate Change Research, 2006,2(4):177-180.
[7]
孙发平.中国三江源区生态价值及补偿机制研究[M]. 中国环境科学出版社, 2008. Sun F P. Study on ecological value and compensation mechanism of three river source areas in China[M]. China Environmental Science Press, 2008.
[8]
Qian S, Yang F, Pan F F. Climate change tendency and grassland vegetation response during the growth season in Three-River Source Region[J]. Science China Earth Sciences, 2010,53(10):1506-1512.
[9]
张继平,刘春兰,郝海广,等.基于MODIS GPP/NPP数据的三江源地区草地生态系统碳储量及碳汇量时空变化研究[J]. 生态环境学报, 2015,24(1):8-13. Zhang J P, Liu C L, Hao H G, et al. Spatial-temporal change of carbon storage and carbon sink of grassland ecosystem in the Three-River Headwaters Region based on MODIS GPP/NPP data[J]. Ecology and Environment Sciences, 2015,24(1):8-13.
[10]
李双,徐新良,付颖.基于高光谱影像的三江源区不同退化程度高寒草甸分类研究[J]. 遥感技术与应用, 2015,30(1):50-57. Li S, Xu X L, Fu Y. A study on classification of different degradation level alpine meadows based on hyperspectral image data in Three-river Headwater Region[J]. Remote Sensing Technology and Application, 2015,30(1):50-57.
[11]
杨海镇,李惠梅,张安录.牧户对三江源草地生态退化的感知[J]. 干旱区研究, 2016,33(4):822-829. Yang H Z, Li H M, Zhang An L. Herdsmen's perception about ecological degeneration of grasslands in the Three-river Source Region, China[J]. Arid Zone Research, 2016,33(4):822-829.
[12]
郝亚蒙.基于遥感的三江源湖泊面积变化及影响因子分析[D]. 北京:中国地质大学, 2018. Hao Y M. Variation of lake area and its impact factors in Three-River Headwaters Region based on remote sensing[D]. Beijing:China University of Geosciences, 2018.
[13]
Delucia E H, Drake J E, Thomas R B, et al. Forest carbon use efficiency:is respiration a constant fraction of gross primary production?[J]. Global Change Biology, 2007,13(6):1157-1167.
[14]
Zhang Y, Xu M, Chen H, et al. Global pattern of NPP to GPP ratio derived from MODIS data:effects of ecosystem type, geographical location and climate[J]. Global Ecology and Biogeography, 2009, 18(3):280-290.
[15]
Campioli M, Gielen B, Ckede M G, et al. Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest[J]. Biogeosciences, 2011,8(9):2481-2492.
[16]
He Y, Piao S L, Li X Y, et al. Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models[J]. Agricultural and Forest Meteorology, 2018,256-257(10):150-158.
[17]
Chambers J Q, Tribuzy E S, Toledo L C, et al. Respiration from a Tropical forest ecosystem:partitioning of sources and low carbon use efficiency[J]. Ecological Applications, 2004,14(sp4):72-88.
[18]
Yang Y, Wang Z Q, Li J L, et al. Assessing the spatiotemporal dynamic of global grassland carbon use efficiency in response to climate change from 2000 to 2013[J]. Acta Oecologica, 2017,81(13):22-31.
[19]
Tang X G, Liu D W, Song K S, et al. A new model of net ecosystem carbon exchange for the deciduous-dominated forest by integrating MODIS and flux data[J]. Ecological Engineering, 2011,37(10):1567-1571.
[20]
Gang F, Sun W, Yu C Q, et al. Clipping alters the response of biomass production to experimental warming:a case study in an alpine meadow on the Tibetan Plateau, China[J]. Journal of Mountain Science, 2015,12(4):935-942.
[21]
姚炳楠,陈报章,车明亮.鄱阳湖流域植被总初级生产力时空变化特征及其气候驱动因子分析[J]. 植物学报, 2016,51(5):639-649. Yao B N, Chen B Z, Che M L. Spatial-temporal change of gross primary productivity in the Poyang Lake Basin from 2000 to 2013 and correlation with meteorologic factors[J]. Chinese Bulletin of Botany, 2016,51(5):639-649.
[22]
赵新全.高寒草甸生态系统与全球变化[M]. 北京:科学出版社, 2009. Zhao X Q. Alpine meadow ecosystem and global change[M]. Beijing:Science Press, 2009.
[23]
Yu G R, Li X R, Wang Q F, et al. Carbon storage and its spatial pattern of terrestrial ecosystemin China[J]. Journal of Resources and Ecology, 2010,1(2):97-109.
[24]
陈丽,郝晋珉,王峰,等.基于碳循环的黄淮平原耕地固碳功能研究[J]. 资源科学, 2016,38(6):1039-1053. Chen L, Hao J M, Wang F, et al. Carbon sequestration function of cultivated land use system based on the carbon cycle for the Huang-Huai-Hai Plain[J]. Resources Science, 2016,38(6):1039-1053.
[25]
杨延征,马元丹,江洪,等.基于IBIS模型的1960~2006年中国陆地生态系统碳收支格局研究[J]. 生态学报, 2016,36(13):3911-3922. Yang Y Z, Ma Y D, Jiang H, et al. Evaluating the carbon budget pattern of Chinese terrestrial ecosystem from 1960 to 2006using Integrated Biosphere Simulator[J]. Acta Ecologica Sinica, 2016, 36(13):3911-3922.
[26]
Evan H. Delucia, John Drake, et al. Forest carbon use efficiency:is respiration a constant fraction of gross primary production[J]. Global Change Biology, 2010,13(6):1157-1167.
[27]
朱先进,于贵瑞,王秋凤,等.典型森林和草地生态系统呼吸各组分间的相互关系[J]. 生态学报, 2013,33(21):6925-6934. Zhu X J, Yu G R, Wang Q F, et al. The interaction between components of ecosystem respiration in typical forest and grassland ecosystems[J]. Acta Ecologica Sinica, 2013,33(21):6925-6934.
[28]
Gifford, Roger M. Plant respiration in productivity models:conceptualisation, representation and issues for global terrestrial carbon-cycle research[J]. Functional Plant Biology, 2003,30(2):171-186.
[29]
Albrizio R, Steduto P. Photosynthesis, respiration and conservative carbon use efficiency of four field grown crops[J]. Agricultural and Forest Meteorology, 2013,116(1/2):0-36.
[30]
Tucker C, Bell J, Pendall E, et al. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?[J]. Global Change Biology, 2012,19(1):252-263.
[31]
Tjoelker M G, Oleskyn J, Reich P. Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate[J]. Global Change Biology, 1999, 5(6):679-691.
[32]
Collalti A, Trotta C, Keenan T, et al. Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate[J]. Journal of Advances in Modeling Earth Systems, 2018,10(10):2427-2452.
[33]
Cheng W X, Sims D A, Luo Y Q, et al. Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations:an invariant NPP:GPP ratio?[J]. Global Change Biology, 2000,6(8):931-941.
[34]
Waring R H, Landsberg J J, Williams M. Net primary production of forests:a constant fraction of gross primary production[J]. Tree Physiology, 1998,18(2):129-134.
[35]
Zha T S, Barr A G, Bernier P Y, et al. Gross and aboveground net primary production at Canadian forest carbon flux sites[J]. Agricultural and Forest Meteorology, 2013,174-175(3):54-64.
[36]
王强,张廷斌,易桂花,等.横断山区2004~2014年植被NPP时空变化及其驱动因子[J]. 生态学报, 2017,9(37):3084-3095. Wang Q, Zhang T B, Yi G H, et al. Tempo-spatial variations and driving factors analysis of net primary productivity in the Hengduan mountain area from 2004 to 2014[J]. Acta Ecologica Sinica, 2017,37(9):3084-3095.
[37]
何奕萱,易桂花,张廷斌,等.红河流域"通道-阻隔"作用下2000~2014年植被EVI变化趋势与驱动力分析[J]. 生态学报, 2018,38(6):2056-2064. He Y X, Yi G H, Zhang T B, et al. The EVI trends and analysis of its driving factors in Red River Basin affected by the "corridor-barrier" function during 2000~2014[J]. Acta Ecologica Sinica, 2018,38(6):2056-2064.
[38]
李辉霞,刘国华,傅伯杰.基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011,31(19):5495-5504. Li H X, Liu G H, Fu B J. Response of vegetation to climate change and human activity based on NDVI in the Three-River Headwaters region[J]. Acta Ecologica Sinica, 2011,31(19):5495-5504.
[39]
唐敏,张勃,张耀宗,等.近55年三江源地区地表干燥度时空变化特征及其对气候因子的响应[J]. 生态环境学报, 2016,25(2):248-259. Tang M, Zhang B, Zhang Y Z, et al. Characteristics of temporal and spatial variations of surface aridity index and climatic factors on the impact in headwaters of the Three Rivers in Recent 55Years[J]. Ecology and Environment Sciences, 2016,25(2):248-259.
[40]
Heinsh F A, Zhao M, Running SW, et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(7):1908-1925.
[41]
Olson R J, Johnson K R, Zheng D L, et al. Global and Regional Ecosystem Modeling:Databases of Model Drivers and Validation Measurements[J]. Office of Scientific& Technical Information Technical Reports, 2002,167(2):437-456.
[42]
Turner D P, Ritts W D, Zhao M, et al. Assessing interannual variation in MODIS-based estimates of gross primary production[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(7):1899-1907.
[43]
Kwon Y, Larsen C P S. Effects of forest type and environmental factors on forest carbon use efficiency assessed using MODIS and FIA data across the eastern USA[J]. International Journal of Remote Sensing, 2013,34(23):8425-8448.
[44]
沃笑,吴良才,张继平,等.基于CASA模型的三江源地区植被净初级生产力遥感估算研究[J]. 干旱区资源与环境, 2014,28(9):45-50. Wo X, Wu L C, Zhang J P, et al. Estimation of net primary production in the Three-River headwater region using CASA model[J]. Journal of Arid Land Resources and Environment, 2014,28(9):45-49.
[45]
袁烨城,李宝林,王双,等.基于GF-1/WFV数据的三江源草地月度NPP反演研究[J]. 地球信息科学学报, 2018,20(12):115-125. Yuan Y C, Li B L, Wang S, et al. Monthly net primary production estimation of grassland in the Three-River Headwater Region using GF-1/WFV data[J]. Journal of Geo-information Science, 2018,20(12):1799-1809.
[46]
Xiao C W, Yuste J C, Janssens I A, et al. Above and belowground biomass and net primary production in a 73-year-old Scots pine forest[J]. Tree Physiology, 2003,23(8):505-516.
[47]
Vicca S, Luyssaert S, PeUelas J, et al. Fertile forests produce biomass more efficiently[J]. Ecology Letters, 2012,15(6):520-526.
[48]
Ryan M G, Hubbard R M, Clark D A., et al. Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits[J]. Oecologia (Berlin), 1994, 100(3):213-220.
[49]
Curtis P S, Vogel C S, Gough C M, et al. Respiratory carbon losses and the carbon-use efficiency of a northern hardwood forest, 1999~2003[J]. New Phytologist, 2005,167(2):437-456.
[50]
Goudie A. Encyclopedia of global change[M]. Oxford:Oxford University Press, 2002:365-369.
[51]
Metcalfe D B, Meir P, Arag O L E O C, et al. Shifts in plant respiration and carbon use efficiency at a large-scale drought experiment in the eastern Amazon[J]. New Phytologist, 2010,187(3):608-621.
[52]
Schuur E A G, Matson P A. Aboveground net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest[J]. Oecologia, 2001,128(3):431-442.
[53]
Litton C M, Raich J W, Ryan M G. Carbon allocation in forest ecosystems[J]. Glob. Change Biol, 2007,13(10):2089-2109.
[54]
王根绪,丁永建,王建,等.近15年来长江黄河源区的土地覆被变化[J]. 地理学报, 2004,59(2):163-173. Wang G X, Ding Y J, Wang J, et al. Land ecological changes and evolutional patterns in the source regions of the Yangtze and Yellow Rivers in Recent 15Years[J]. ACTA GEOGRAPHICA SINICA, 2004, 59(2):163-173.
[55]
刘璐璐,曹巍,邵全琴.近30年来长江源区与黄河源区土地覆被及其变化对比分析[J]. 地理科学, 2017,37(2):311-320. Liu L L, Cao W, Shao Q Q. Different characteristics of land cover changes in source region of the Yangtze River and the Yellow River in the past 30 years[J]. Scientia Geographica Sinica, 2017,37(2):311-320.
[56]
Zhang Y J, Yu G R, Yang J, et al. Climate-driven global changes in carbon use efficiency[J]. Global Ecology & Biogeography, 2014,23(2):144-155.
[57]
Giardina C P, Ryan M G, Binkley D, et al. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest[J]. Global Change Biology, 2010,9(10):1438-1450.
[58]
Liu D, Li Y, Wang T, et al. Contrasting responses of grassland water and carbon exchanges to climate change between Tibetan Plateau and Inner Mongolia[J]. Agricultural and Forest Meteorology, 2018, 249(10):163-175.
[59]
Crowther T W, Bradford M A, Johnson N. Thermal acclimation in widespread heterotrophic soil microbes[J]. Ecology Letters, 2013, 16(4):469-477.
[60]
Atkin O K, Evans J R, Ball M C, et al. Leaf respiration of snow gum in the light and dark. Interactions between temperature and irradiance[J]. Plant Physiol, 2000,122(3):915-923.
[61]
Bostad P V, Reich P, Lee T. Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra[J]. Tree Physiol, 2003,23(14):969-976.
[62]
刘亚.基于MODIS植被指数的三江源植被物候变化及其对气候变化的响应[D]. 上海:东华理工大学, 2017. Liu Y. Vegetation phenology and its response to climate change based on MODIS vegetation index in Three-River Headwater Region[D]. Shanghai:East University of Science and Technology, 2017.
[63]
Piao S, Friedlingstein P, Ciais P, et al. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2decades[J]. Glob. Biogeochem. Cycles, 2007,21(3):1148-1154.
[64]
Maseyk K, Grünzweig JM, Rotenberg E, et al. Respiration acclimation contributes to high carbon-use efficiency in a seasonally dry pine forest[J]. Glob. Change Biol, 2008,14(7):1553-1567.
[65]
张春华,王莉媛,宋茜薇,等.1973~2013年黑龙江省森林碳储量及其动态变化[J]. 中国环境科学, 2018,38(12):4678-4686. Zhang C H, Wang L Y, Song Q W, et al. Biomass carbon stocks and dynamics of forests in Heilongjiang Province from 1973 to 2013[J]. China Environmental Science, 2018,38(12):4678-4686.