Research progress on separation principle and selective permeability of magnesium and lithium by nanofiltration membrane
WANG Wu-bin, WANG Jin, DOU Meng-meng, ZHANG Qing-yun, WANG Xiao-yue, HUO Kai-li, HAN Chao
Beijing Key Laboratory of Typical Pollutant Control and Water Quality Assurance, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
Abstract:This paper reviews recent studies on the separation of magnesium and lithium using nanofiltration membranes, with a primary focus on their physicochemical characteristics, ionic conductivity, and hydration features. It explains the main mechanisms of composite nanofiltration membranes in lithium extraction from salt lakes. Building upon the concept of interfacial polymerization, this review presents recent research on the separation of magnesium and lithium using composite nanofiltration membranes. These membranes are prepared through various methods such as aqueous monomer design, organic monomer design, surface grafting of the polyamide layer, reverse interfacial polymerization, the introduction of intermediate layers, and the modification of support layers. The characteristics of layer-by-layer self-assembly and coating cross-linking in optimizing nanofiltration membrane performance are elucidated. Finally, this paper provides a summary and future outlook for the separation of magnesium and lithium using nanofiltration membranes, from the perspectives of membrane modification methods, practical environmental applications, and industrial development. The aim is to offer theoretical support and practical guidelines for research fields such as lithium extraction through nanofiltration.
王武斌, 王锦, 窦蒙蒙, 张清云, 王晓月, 霍凯利, 韩超. 纳滤膜镁锂分离机理与选择渗透性研究进展[J]. 中国环境科学, 2023, 43(8): 3983-3993.
WANG Wu-bin, WANG Jin, DOU Meng-meng, ZHANG Qing-yun, WANG Xiao-yue, HUO Kai-li, HAN Chao. Research progress on separation principle and selective permeability of magnesium and lithium by nanofiltration membrane. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(8): 3983-3993.
Sun Y, Wang Q, Wang Y H, et al. Recent advances in magnesium/lithium separation and lithium extraction technologies from salt lake brine[J]. Separation and Purification Technology, 2021, 256:117807.
[2]
Li X H, Mo Y H, Qing W H, et al. Membrane-based technologies for lithium recovery from water lithium resources:A review[J]. Journal of Membrane Science, 2019,591:117317.
[3]
Meng F, McNeice J, Zadeh S S, et al. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries[J]. Mineral Processing and Extractive Metallurgy Review, 2021,42(2):123-141.
[4]
Xu X X, Wang P T, Xu W C, et al. Plasma-catalysis of metal loaded SBA-15for toluene removal:Comparison of continuously introduced and adsorption-discharge plasma system[J]. Chemical Engineering Journal, 2016,283:276-284.
[5]
Zhao Z W, Si X F, Liu X H, et al. Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4as electrode materials[J]. Hydrometallurgy, 2013,133:75-83.
[6]
Razmjou A, Asadnia M, Hosseini E, et al. Design principles of ion selective nanostructured membranes for the extraction of lithium ions[J]. Nature Communications, 2019,10(1):5793.
[7]
蒋晨啸,陈秉伦,张东钰,等.我国盐湖锂资源分离提取进展[J].化工学报, 2022,73(2):481-503. Jiang H C, Chen B L, Zhang D Y, et al. Progress in isolating lithium resources from China salt lake brine[J] Journal of Chemical Industry and Engineering, 2022,73(2):481-503.
[8]
Tabelin C B, Dallas J, Casanova S, et al. Towards a low-carbon society:A review of lithium resource availability, challenges and innovations in mining, extraction and recycling, and future perspectives[J]. Minerals Engineering, 2021,163:106743.
[9]
林钰青,张以任,邱宇隆,等.膜技术在盐湖提锂中的进展和展望[J].无机盐工业, 2023,55(1):33-45. Lin Y Q, Zhang Y R, Qiu Y L, et al. Progress and prospect of membrane technology in lithium extraction from salt lake brine[J]. Inorganic Chemicals Industry, 2023,55(1):33-45.
[10]
Lu D, Yao Z K, Jiao L, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022,2:100032.
[11]
Li H, Wang Y, Li T, et al. Nanofiltration membrane with crown ether as exclusive Li+ transport channels achieving efficient extraction of lithium from salt lake brine[J]. Chemical Engineering Journal, 2022, 438:135658.
[12]
Ritt C L, Liu M, Pham T A, et al. Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores[J]. Science Advances, 2022,8(2):eabl5771.
[13]
Pavluchkov V, Shefer I, Peer-Haim O, et al. Indications of ion dehydration in diffusion-only and pressure-driven nanofiltration[J]. Journal of Membrane Science, 2022,648:120358.
[14]
Wen Q, Yan D X, Liu F, et al. Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films[J]. Advanced Functional Materials, 2016,26(32):5796-5803.
[15]
Joshi R K, Carbone P, Wang F C, et al. Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes[J]. Science, 2014,343(6172):752-754.
[16]
Xu P, Wang W, Qian X M, et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio[J]. Desalination, 2019,449:57-68.
[17]
Lu D, Ma T, Lin S S, et al. Constructing a selective blocked-nanolayer on nanofiltration membrane via surface-charge inversion for promoting Li+ permselectivity over Mg2+[J]. Journal of Membrane Science, 2021,635:119504.
[18]
Thibault K, Zhu H, Szymczyk A, et al. The averaged potential gradient approach to model the rejection of electrolyte solutions using nanofiltration:Model development and assessment for highly concentrated feed solutions[J]. Separation and Purification Technology, 2015,153:126-137.
[19]
Wen X M, Ma P H, Zhu C L, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation and Purification Technology, 2006,49(3):230-236.
[20]
Chen Y J, Zhu Y D, Ruan Y, et al. Molecular insights into multilayer 18-crown-6-like graphene nanopores for K+/Na+ separation:A molecular dynamics study[J]. Carbon, 2019,144:32-42.
[21]
Epsztein R, DuChanois R M, Ritt C L, et al. Towards single-species selectivity of membranes with subnanometre pores[J]. Nature Nanotechnology, 2020,15(6):426-436.
[22]
Xu F, Dai L H, Wu Y L, et al. Li+/Mg2+ separation by membrane separation:The role of the compensatory effect[J]. Journal of Membrane Science, 2021,636:119542.
[23]
Guo C S, Qian X M, Tian F, et al. Amino-rich carbon quantum dots ultrathin nanofiltration membranes by double "one-step " methods:Breaking through trade-off among separation, permeation and stability[J]. Chemical Engineering Journal, 2021,404:127144.
[24]
Li X H, Zhang C J, Zhang S N, et al. Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation[J]. Desalination, 2015,369:26-36.
[25]
Sarkar P, Modak S, Karan S. Ultraselective and Highly Permeable Polyamide Nanofilms for Ionic and Molecular Nanofiltration[J]. Advanced Functional Materials, 2021,31(3):2007054.
[26]
Wu M B, Ye H, Zhu Z Y, et al. Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation[J]. Journal of Membrane Science, 2022,644:119942.
[27]
Wu D H, Yu S C, Lawless D, et al. Thin film composite nanofiltration membranes fabricated from polymeric amine polyethylenimine imbedded with monomeric amine piperazine for enhanced salt separations[J]. Reactive and Functional Polymers, 2015,86:168-183.
[28]
Zhao J H, You X D, Wang G Z, et al. Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration[J]. Journal of Membrane Science, 2022,644:120051.
[29]
Zhao Y, Li N, Shi J, et al. Extra-thin composite nanofiltration membranes tuned by γ-cyclodextrins containing amphipathic cavities for efficient separation of magnesium/lithium ions[J]. Separation and Purification Technology, 2022,286:120419.
[30]
Wang J, Zhao C W, Wang T, et al. Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification[J]. RSC Advances, 2016,6(85):82174-82185.
[31]
Shen Q, Xu S J, Xu Z L, et al. Novel thin-film nanocomposite membrane with water-soluble polyhydroxylated fullerene for the separation of Mg2+/Li+ aqueous solution[J]. Journal of Applied Polymer Science, 2019,136(41):48029.
[32]
Aghili F, Ghoreyshi A A, Van der Bruggen B, et al. A highly permeable UiO-66-NH2/polyethyleneimine thin-film nanocomposite membrane for recovery of valuable metal ions from brackish water[J]. Process Safety and Environmental Protection, 2021,151:244-256.
[33]
Xu P, Hong J, Xu Z Z, et al. Novel aminated graphene quantum dots (GQDs-NH2)-engineered nanofiltration membrane with high Mg2+/Li+ separation efficiency[J]. Separation and Purification Technology, 2021,258:118042.
[34]
Bi Q Y, Zhang C, Liu J D, et al. Positively charged zwitterion-carbon nitride functionalized nanofiltration membranes with excellent separation performance of Mg2+/Li+ and good antifouling properties[J]. Separation and Purification Technology, 2021,257:117959.
[35]
Xu P, Hong J, Xu Z Z, et al. MWCNTs-COOK-assisted high positively charged composite membrane:Accelerating Li+ enrichment and Mg2+ removal[J]. Composites Part B:Engineering, 2021,212:108686.
[36]
Zhang H Z, Xu Z L, Ding H, et al. Positively charged capillary nanofiltration membrane with high rejection for Mg2+ and Ca2+ and good separation for Mg2+ and Li+[J]. Desalination, 2017,420:158-166.
[37]
Wu H H, Lin Y K, Feng W Y, et al. A novel nanofiltration membrane with[MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio[J]. Journal of Membrane Science, 2020, 603:117997.
[38]
Hu P, Yuan B B, Niu Q J, et al. Modification of polyamide nanofiltration membrane with ultra-high multivalent cations rejections and mono-/divalent cation selectivity[J]. Desalination, 2022,527:115553.
[39]
Yuan B B, Jiang C, Li P F, et al. Ultrathin polyamide membrane with decreased porosity designed for outstanding water-softening performance and superior antifouling properties[J]. ACS Applied Materials & Interfaces, 2018,10(49):43057-43067.
[40]
Li W, Shi C, Zhou A, et al. A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2separation[J]. Separation and Purification Technology, 2017,186:233-242.
[41]
Peng H W, Zhao Q. A nano-heterogeneous membrane for efficient separation of lithium from high magnesium/lithium ratio brine[J]. Advanced Functional Materials, 2021,31(14):2009430.
[42]
Gu T R, Zhang R N, Zhang S Y, et al. Quaternary ammonium engineered polyamide membrane with high positive charge density for efficient Li+/Mg2+separation[J]. Journal of Membrane Science, 2022, 659:120802.
[43]
Xu Y, Peng H W, Luo H, et al. High performance Mg2+/Li+ separation membranes modified by a bis-quaternary ammonium salt[J]. Desalination, 2022,526:115519.
[44]
Feng Y X, Peng H W, Zhao Q. Fabrication of high performance Mg2+/Li+ nanofiltration membranes by surface grafting of quaternized bipyridine[J]. Separation and Purification Technology, 2022,280:119848.
[45]
Luo H, Peng H W, Zhao Q. High flux Mg2+/Li+ nanofiltration membranes prepared by surface modification of polyethylenimine thin film composite membranes[J]. Applied Surface Science, 2022,579:152161.
[46]
Li Y H, Wang S H, Wu W Y, et al. Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation[J]. Journal of Membrane Science, 2022,659:120809.
[47]
Wang Q Y, Dong Y P, Ma J M, et al. Polyamide/polyethylene thin film composite (PA/PE-TFC) NF membranes prepared from reverse-phase interface polymerization (RIP) for improved Mg (II)/Li (I) separation[J]. Desalination, 2023,553:116463.
[48]
Yang Z, Fang W X, Wang Z Y, et al. Dual-skin layer nanofiltration membranes for highly selective Li+/Mg2+ separation[J]. Journal of Membrane Science, 2021,620:118862.
[49]
Guo C S, Li N, Qian X M, et al. Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+:" Drag "effect from carboxyl-containing negative interlayer[J]. Separation and Purification Technology, 2020,230:115567.
[50]
Liu S, Wu C, Hung W S, et al. One-step constructed ultrathin Janus polyamide nanofilms with opposite charges for highly efficient nanofiltration[J]. Journal of Materials Chemistry A, 2017,5(44):22988-22996.
[51]
Wu C R, Liu S H, Wang Z Y, et al. Nanofiltration membranes with dually charged composite layer exhibiting super-high multivalent-salt rejection[J]. Journal of Membrane Science, 2016,517:64-72.
[52]
Xu P, Hong J, Qian X M, et al." Bridge"graphene oxide modified positive charged nanofiltration thin membrane with high efficiency for Mg2+/Li+ separation[J]. Desalination, 2020,488:114522.
[53]
Xu P, Hong J, Xu Z Z, et al. Positively charged nanofiltration membrane based on (MWCNTs-COOK)-engineered substrate for fast and efficient lithium extraction[J]. Separation and Purification Technology, 2021,270:118796.
[54]
Tan Z, Chen S F, Peng X S, et al. Polyamide membranes with nanoscale Turing structures for water purification[J]. Science, 2018,360(6388):518-521.
[55]
Yuan B B, Wang N, Zhao S H, et al. Polyamide nanofiltration membrane fine-tuned via mixed matrix ultrafiltration support to maximize the sieving selectivity of Li+/Mg2+ and Cl-/SO42-[J]. Desalination, 2022,538:115929.
[56]
Yuan B B, Zhao S H, Xu S J, et al. Aliphatic polyamide nanofilm with ordered nanostripe, synergistic pore size and charge density for the enhancement of cation sieving[J]. Journal of Membrane Science, 2022,660:120839.
[57]
He R R, Dong C J, Xu S S, et al. Unprecedented Mg2+/Li+ separation using layer-by-layer based nanofiltration hollow fiber membranes[J]. Desalination, 2022,525:115492.
[58]
Wang L, Rehman D, Sun P F, et al. Novel positively charged metal-coordinated nanofiltration membrane for lithium recovery[J]. ACS Applied Materials & Interfaces, 2021,13(14):16906-16915.
[59]
Mi Z Z, Liu Z X, Jin S Z, et al. Positively charged nanofiltration membrane prepared by polydopamine deposition followed by crosslinking for high efficiency cation separation[J]. Polymer Testing, 2021,93:107000.
[60]
Li Q, Liu H, He B Q, et al. Ultrahigh-efficient separation of Mg2+/Li+ using an in-situ reconstructed positively charged nanofiltration membrane under an electric field[J]. Journal of Membrane Science, 2022,641:119880.
[61]
Li Q, Liu Y H, Liu Y H, et al. Mg2+/Li+ separation by electric field assisted nanofiltration:the impacts of membrane pore structure, electric property and other process parameters[J]. Journal of Membrane Science, 2022,662:120982.
[62]
Yang G, Shi H, Liu W Q, et al. Investigation of Mg2+/Li+ separation by nanofiltration[J]. Chinese Journal of Chemical Engineering, 2011, 19(4):586-591.
[63]
Sun S Y, Cai L J, Nie X Y, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015,7:210-21.