|
|
Chemical composition of different parts of chili stalks and their biogas production potentials during anaerobic fermentation |
BI Jin-hua1,2, CHENG Guang-yin1, CHEN Le1, LI Yun-long1, HEI Kun-lun1,2, ZHANG Ying-peng1,2, HUO Li-jiao1,2, CHANG Zhi-zhou1 |
1. East China Scientific Observing and Experimental Station of Development and Utilization of Rural Renewable Energy, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China |
|
|
Abstract In order to study the physiochemical properties of different parts of chili stalks and their biogas production potentials during anaerobic digestion, chili (Sujiao16) was used as the raw material. The biomass, physicochemical properties and the biogas production of different straw parts of Sujiao16were conducted at bench scale. Results showed that straw yield of Sujiao16was up to 21 t/hm2, and the ratio of chili plants biomass to chili yield was 0.36. Different parts of Sujiao16 straw had significant (P<0.05) effects on physicochemical characteristics and biogas production, with the order of leaves (185.2mL/gVS) >stem (104.2mL/gVS) >root (68.9mL/gVS). The relative content of fiber and carbohydrate of different parts of Sujiao16stalks had strong impacts on the biogas production potential of the whole straw. According to the theoretical biogas production based on molecular formula, the biogas production potential of Sujiao16was evaluated, indicating that the bioconversion rates of different straw parts were relatively low during anaerobic fermentation. Thus the reasons needed to be studied in the future.
|
Received: 17 December 2015
|
|
|
|
|
[1] |
FAO. The state of world crops production [EB/Z]. http://faostat3. fao.org/download/Q/QC/E, 2015.
|
[2] |
何圣米,吴爱芳,汪芽芬.辣椒秸秆基质对辣椒生长的影响 [J]. 长江蔬菜, 2010,16:61-63.
|
[3] |
陆相龙,董 青,邵 涛,等.辣椒秸秆辣椒素和营养成分含量测定 [J]. 中国草食动物科学, 2012,5:24-27.
|
[4] |
刘 芳,邱 凌,李自林,等.蔬菜废弃物厌氧发酵产气特性 [J]. 西北农业学报, 2013,22(10):162-170.
|
[5] |
Karthikeyan O P, Visvanathan C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review [J]. Reviews in Environmental Science & Biotechnology, 2013,12(3):257-284.
|
[6] |
El-Fadel M, Abou Najm M. Economic and environmental optimization of integrated solid waste management systems [J]. Journal of Solid Waste Technology and Management, 2002,28(4): 222-232.
|
[7] |
罗 娟,田宜水,陈 羚,等.设施园艺废弃物厌氧消化产沼气特性 [J]. 农业工程学报, 2014(15):256-263.
|
[8] |
邵艳秋,邱 凌.野菠菜厌氧发酵产气潜力 [J]. 西北农业学报, 2011,(1):190-193.
|
[9] |
陈广银,郑 正,邹星星,等.水葫芦不同部位的厌氧消化特性 [J]. 环境化学, 2009,28(1):16-20.
|
[10] |
鲍士旦.土壤农化分析 [M]. 3版.北京:中国农业出版社, 2000: 12.
|
[11] |
杨 胜.饲料分析及饲料质量监测技术 [M]. 北京:北京农业大学出版社, 1983.
|
[12] |
Xi Y, Chang Z, Ye X, et al. Methane production from wheat straw with anaerobic sludge by heme supplementation [J]. Bioresource Technology, 2014,172:91-96.
|
[13] |
Li R, Chen S, Li X, et al. Anaerobic codigestion of kitchen waste with cattle manure for biogas production [J]. Energy Fuels, 2009,23(4):2225-2228.
|
[14] |
Rittmann B E, Mc Carty P L 著,文湘华,王建龙,等译.环境生物技术原理与应用 [M]. 北京:清华大学出版社, 2004.
|
[15] |
Symons G E, Bushwell A M. The methane fermentation of carbohydrate. Journal of the american chemical society [J]. 1933, 55:2028-2039.
|
[16] |
野池达也.甲烷发酵 [M]. 北京:化学工业出版社, 2014.
|
[17] |
王晓玉,薛 帅,谢光辉.大田作物秸秆量评估中秸秆系数取值研究 [J]. 中国农业大学学报, 2012,17(1):1-8.
|
[18] |
朱建春,李荣华,杨香云,等.近30年来中国农作物秸秆资源量的时空分布 [J]. 西北农林科技大学学报:自然科学版, 2012, 40(4):139-145.
|
[19] |
谢光辉,韩东倩,王晓玉,等.中国禾谷类大田作物收获指数和秸秆系数 [J]. 中国农业大学学报, 2011,16(1):1-8.
|
[20] |
中华人民共和国国家统计局.国家数据库 [J]. 2015.http://data. stats.gov.cn/easyquery.htm? cn=C01.
|
[21] |
Motte J C, Escudié R, Beaufils N, et al. Morphological structures of wheat straw strongly impacts its anaerobic digestion [J]. Industrial Crops and Products, 2014,52:695-701.
|
[22] |
李春俭.高级植物营养学 [M]. 北京:中国农业大学出版社, 2008.
|
[23] |
Nyns E J. Biomethanation processes [C]//Microbial Degradations, vol. 18, Wily-VCH Weinheim, Berlin, 1986:27-67.
|
[24] |
Shi J, Lv W. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover [J]. Waste Management, 2013,33(1):26-32.
|
[25] |
陈广银,郑 正,常志州,等.不同生长期互花米草的理化特性及厌氧发酵特性 [J]. 农业工程学报, 2011,27(3):260-265.
|
[26] |
Chen G, Zheng Z, Yang S, et al. Improving conversion of Spartina alterniflora into biogas by co-digestion with cow feces [J]. Fuel Processing Technology, 2010,91(11):1416-1421.
|
[27] |
Sanchez E, Borja R, Travieso L, et al. Effect of organic loading rate on the stability, operational parameters and performance of a secondary upflow anaerobic sludge bed reactor treating piggery waste [J]. Bioresource Technology, 2005,96(3):335-344.
|
[28] |
李玉春,陈广银,常志州,等.碳氮比对稻秸厌氧发酵过程的影响 [J]. 中国沼气, 2012,30(4):25-29.
|
[29] |
Monlau F, Barakat A, Trably E, et al. Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment [J]. Critical Reviews in Environmental Science and Technology, 2013,43(3):260-322.
|
[30] |
Monlau F, Sambusiti C, Barakat A, et al. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials [J]. Environmental Science & Technology, 2012,46(21):12217- 12225.
|
[31] |
Vassilev S V, Baxter D, Andersen L K, et al. An overview of the organic and inorganic phase composition of biomass [J]. Fuel, 2012,94:1-33.
|
|
|
|