|
|
Pollution characteristics and interaction between PM2.5 and O3 at different types of stations in Guangzhou |
YAO Yi-juan1, WANG Mei-yuan1, ZENG Chun-lin1, FAN Li-ya1,2,3,4, YE Dai-qi1,2,3,4 |
1. School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; 2. National Engineering Laboratory for Volatile Organic Compounds Pollution Control Technology and Equipment, Guangzhou 510006, China; 3. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, China; 4. Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, Guangzhou 510006, China |
|
|
Abstract Based on the air pollutant monitoring data of 4 different types of national-controlled stations from 2015 to 2019 in Guangzhou, the pollution characteristics of particulate matter (PM2.5) and ozone (O3) pollution at each type of station were studied, and the correlation and interaction between PM2.5 and O3 in O3 pollution season and PM2.5 pollution season were further analyzed. The results are as follows:the concentration of PM2.5 at each type of station in Guangzhou generally showed a downward trend from 2015 to 2019, while the O3 concentration showed an upward trend. There is a positive correlation between PM2.5 and O3 concentration in different pollution seasons. In O3 pollution season, the generation of secondary PM2.5 had a more significant impact on particulate matter than the primary PM2.5. With the increase of photochemical level, the contribution concentration of primary PM2.5 basically remained unchanged (all in the range of 21.03~31.37μg/m3), while the contribution rate gradually decreased; However, the contribution concentration of secondary PM2.5 increased in multiple (from 3.51~7.72μg/m3 to 16.04~18.45μg/m3) as well as the contribution rate (from 11%~27% to 34%~44%). Moreover, the contribution of secondary PM2.5 at different types of stations were significantly different, the contribution of secondary PM2.5 was the largest at the background station, while the contribution of secondary PM2.5 was the smallest at the urban station at the medium and the high photochemical level. In PM2.5 pollution season, the O3 concentration at each type of station under different PM2.5 pollution levels was different. Generally, it showed the characteristics of background station > suburban station > urban station. The extinction effect and heterogeneous reaction of aerosol significantly promoted the generation of O3. With the increase of PM2.5 concentration, the peak of O3 concentration at each type of station gradually increased from 62.12~83.82μg/m3 to 92.49~135.4μg/m3, and the peak value of O3 change rate also increased from 8.42~10.02μg/(m3·h) to 21.33~27.04μg/(m3·h), which further promoted the coordinated growth of PM2.5 and O3 concentrations in Guangzhou.
|
Received: 09 February 2021
|
|
|
|
|
[1] |
赵辉,郑有飞,吴晓云,等.江苏省大气复合污染特征与相关气象驱动[J]. 中国环境科学, 2018,38(8):2830-2839.Zhao H, Zheng Y F, Wu X Y, et al. Atmospheric compound pollution characteristics and the effects of meteorological factors in Jiangsu Province[J]. China Environmental Science, 2018,38(8):2830-2839.
|
[2] |
王韵杰,张少君,郝吉明.中国大气污染治理:进展·挑战·路径[J]. 环境科学研究, 2019,32(10):1755-1762.Wang Y J, Zhang H J, Hao J M. Air pollution control in China:Progress, challenges and future pathways[J]. Research of Environmental Sciences, 2019,32(10):1755-1762.
|
[3] |
郝建奇,葛宝珠,王自发,等.2014年6月南京大气复合污染观测[J]. 环境科学, 2017,38(9):3585-3593.Hao J Q, Ge B Z, Wang Z F, et al. Observational study of air pollution complex in Nanjing in June 2014[J]. Environmental Sciences, 2017,38(9):3585-3593.
|
[4] |
毛卓成,许建明,杨丹丹,等.上海地区PM2.5-O3复合污染特征及气象成因分析[J]. 中国环境科学, 2019,39(7):2730-2738.Mao Z C, Xu J M, Yang D D, et al. Analysis of characteristics and meteorological causes of PM2.5-O3 compound pollution in Shanghai[J]. China Environmental Science, 2019,39(7):2730-2738.
|
[5] |
赖安琪,陈晓阳,刘一鸣,等.珠江三角洲PM2.5和O3复合污染过程的数值模拟[J]. 中国环境科学, 2017,37(11):4022-4031.Lai A Q, Chen X Y, Liu Y M, et al. Numerical simulation of a complex pollution episode with high concentrations of PM2.5 and O3 over the Pearl River Delta region, China[J]. China Environmental Science, 2017,37(11):4022-4031.
|
[6] |
Chen J, Shen H, Li T, et al. Temporal and spatial features of the correlation between PM2.5 and O3 concentrations in China[J]. International Journal of Environmental Research and Public Health, 2019,16(23):4824.
|
[7] |
尚媛媛,舒卓智,郑小波,等.云贵高原城市冬夏季PM2.5与O3相互作用机理——以贵阳市为例[J]. 生态环境学报, 2018,27(12):2284-2289.Shang Y Y, Shu Z Z, Zheng X B, et al. Interaction mechanism between PM2.5 and O3 in winter and summer in Yunnan-Guizhou plateau:a case study of Guiyang[J]. Ecology and Environmental Sciences, 2018,27(12):2284-2289.
|
[8] |
Zhao H, Zheng Y, Li C. Spatiotemporal distribution of PM2.5 and O3 and their interaction during the summer and winter seasons in Beijing, China[J]. Sustainability, 2018,10(12):4519.
|
[9] |
Feng T. Summertime ozone formation in Xi'an and surrounding areas, China[J]. Atmospheric Chemistry & Physics Discussions, 2016,15(7):4323-4342.
|
[10] |
Li L, Lu C, Chan P W, et al. Tower observed vertical distribution of PM2.5, O3 and NOx in the Pearl River Delta[J]. Atmospheric Environment, 2019,220:117083.
|
[11] |
邵平,辛金元,安俊琳,等.长三角工业区夏季近地层臭氧和颗粒物污染相互关系研究[J]. 大气科学, 2017,41(3):618-628.Shao P, Xin J Y, An J L, et al. An analysis on the relationship between ground-level ozone and particulate matter in an industrial area in the Yangtze River Delta during summer time[J]. Chinese Journal of Atmospheric Sciences, 2017,41(3):618-628.
|
[12] |
刘长焕,邓雪娇,朱彬,等.近10年中国三大经济区太阳总辐射特征及其与O3、PM2.5的关系[J]. 中国环境科学, 2018,38(8):2820-2829.Liu C H, Deng X J, Zhu B, et al. Characteristics of GSR of China's three major economic regions in the past 10 years and its relationship with O3 and PM2.5[J]. China Environmental Science, 2018,38(8):2820-2829.
|
[13] |
周胜,黄报远,陈慧英,等.珠三角城市群PM2.5和O3污染特征及VOCs组分敏感性分析[J]. 环境工程, 2020,38(1):42-47,92.Zhou S, Huang B Y, Chen H Y, et al. Pollution characterastics of PM2.5 and O3 in the pearl river delta and the sensitivity analysis of VOCs components[J]. Environmental Engineering, 2020,38(1):42-47,92.
|
[14] |
李红,彭良,毕方,等.我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究, 2019,32(10):1763-1778.Li H, Peng L, Bi F, et al. Strategy of coordinated control of PM2.5 and ozone in China[J]. Research of Environmental Sciences, 2019, 32(10):1763-1778.
|
[15] |
Meng Z, Dabdub D, Seinfeld J H. Chemical Coupling Between Atmospheric Ozone and Particulate Matter[J]. Science, 1997,277(5322):116-119.
|
[16] |
Jacob D J. Heterogeneous chemistry and tropospheric ozone[J]. Atmospheric Environment, 2000,34(12-14):2131-2159.
|
[17] |
蔡彦枫,王体健,谢旻,等.南京地区大气颗粒物影响近地面臭氧的个例研究[J]. 气候与环境研究, 2013,18(2):251-260.Cai Y F, Wang T J, Xie W, et al. Impacts of atmospheric particles on surface ozone in Nanjing[J]. Climatic and Environmental Research, 2013,18(2):251-260.
|
[18] |
李佳慧,刘红年,王学远,等.苏州城市气溶胶和臭氧相互作用的观测分析[J]. 环境监测管理与技术, 2019,31(1):32-36.Li J H, Liu H N, Wang X Y, et al. Observation analysis on aerosol and ozone interaction in Suzhou[J]. The Administration and Technique of Environmental Monitoring, 2019,31(1):32-36.
|
[19] |
Forkel R, Werhahn J, Hansen A B, et al. Effect of aerosol-radiation feedback on regional air quality-A case study with WRF/Chem[J]. Atmospheric Environment, 2012,53:202-211.
|
[20] |
Qu Y W, Wang T, Cai Y, et al. Influence of atmospheric particulate matter on ozone in Nanjing, China:Observational study and mechanistic analysis[J]. Advances in Atmospheric Sciences, 2018, 35(11):1381-1395.
|
[21] |
Lou S, Liao H, Zhu B. Impacts of aerosols on surface-layer ozone concentrations in China through heterogeneous reactions and changes in photolysis rates[J]. Atmospheric Environment, 2014,85:123-138.
|
[22] |
崔虎雄,吴迓名,段玉森,等.上海市浦东城区二次气溶胶生成的估算[J]. 环境科学, 2013,34(5):2003-2009.Cui H X, Wu X M, Duan Y S, et al. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in the downtown of Pudong, Shanghai.[J]. Environmental Science, 2013,34(5):2003-2009.
|
[23] |
潘竟虎,张文,李俊峰,等.中国大范围雾霾期间主要城市空气污染物分布特征[J]. 生态学杂志, 2014,33(12):3423-3431.Pan J H, Zhang W, Li J F, et al. Spatial distribution characteristics of air pollutants in major cities in China during the period of wide range haze pollution[J]. Chinese Journal of Ecology, 2014,33(12):3423-3431.
|
[24] |
HJ 663-2013环境空气质量评价技术规范(试行)[S].HJ 663-2013 Technical regulation on ambient air quality index (on trial)[S].
|
[25] |
GB 3095-2012环境空气质量标准[S].GB 3095-2012 Ambient air quality standards[S].
|
[26] |
Chang S C, Lee C T. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003[J]. Atmospheric Environment, 2007, 41(19):4002-4017.
|
[27] |
张宇静,赵天良,殷翀之,等.徐州市大气PM2.5与O3作用关系的季节变化[J]. 中国环境科学, 2019,(6):2267-2272.Zhang Y J, Zhao T L, Ying C Z, et al. Seasonal variation of the relationship between surface PM2.5 and O3 concentrations in Xuzhou[J]. China Environmental Science, 2019,(6):2267-2272.
|
[28] |
高平,庄立跃,王龙,等.广州地区秋季不同站点类型地面臭氧变化特征与影响因子[J]. 环境科学, 2020,41(8):3527-3538.Gao P, Zhuang L Y, Wang L, et al. Characteristics of surface ozone and impact factors at different station types during the autumn in Guangzhou[J]. Environmental Science, 2020,41(8):3527-3538.
|
[29] |
沈劲,钟流举,叶斯琪,等.珠三角干湿季大气污染特性[J]. 中国科技论文, 2015,10(15):1748-1751.Shen J, Zhong L J, Ye S Q, et al. Characteristics of air pollution in dry and wet seasons in the Pearl River Delta[J]. Chinese Science and Technology Papers, 2015,10(15):1748-1751.
|
[30] |
姜蕴聪,杨元建,王泓,等.2015~2018年中国代表性城市PM2.5浓度的城乡差异[J]. 中国环境科学, 2019,39(11):4552-4560.Jiang Y C, Yang Y J, Wang H, et al. Urban-rural differences in PM2.5 concentrations in the representative cities of China during 2015~2018[J]. China Environmental Science, 2019,39(11):4552-456.
|
[31] |
Han L, Zhou W, Li W, et al. Impact of urbanization level on urban air quality:A case of fine particles (PM2.5) in Chinese cities[J]. Environmental Pollution, 2014,194:163-170.
|
[32] |
程麟钧,王帅,宫正宇,等.中国臭氧浓度的时空变化特征及分区[J]. 中国环境科学, 2017,37(11):4003-4012.Cheng L J, Wang S, Gong Z Y, et al. Spatial and seasonal variation and regionalization of ozone concentrations in China[J]. China Environmental Science, 2017,37(11):4003-4012.
|
[33] |
严晓瑜,缑晓辉,杨婧,等.中国典型城市臭氧变化特征及其与气象条件的关系[J]. 高原气象, 2020,39(2):416-430.Yan X Y, Gou X H, Yang J, et al. The variety of ozone and its relationship with meteorological conditions in typical cities in China[J]. Plateau Meteorology, 2020,39(2):416-430.
|
[34] |
韩志伟,张美根,胡非.生态NMHC对臭氧和PAN影响的数值模拟研究[J]. 环境科学学报, 2002,22(3):273-278.Han Z W, Zhang M G, Hu F. Numerical model study of the effect of biogenic NMHC on ozone and PAN[J]. Acta Scientiae Circumstantia, 2002,22(3):273-278.
|
[35] |
颜丰华,陈伟华,常鸣,等.珠江三角洲大气光化学氧化剂Ox与PM2.5复合超标污染特征及气象影响因素[J/OL]. 环境科学:1-29[2020-12-27]. https://doi.org/10.13227/j.hjkx.202007286.Yan F H, Chen Y H, Chang M, et al. Characteristics and meteorological factors of complex nonattainment pollution of atmospheric photochemical oxidant Ox and PM2.5 in the Pearl River Delta Region, China[J/OL]. Environmental Science:1-29[2020-12-27]. https://doi.org/10.13227/j.hjkx.20200726.
|
[36] |
黄俊,廖碧婷,王春林,等.广州市PM2.5污染特征及潜在贡献源区分析[J]. 环境科学与技术, 2019,42(4):109-118.Huang J, Liao B T, Wang C L, et al. Analysis of the characteristics and potential source contribution of PM2.5 pollution in Guangzhou[J]. Environmental Science & Technology, 2019,42(4):109-118.
|
[37] |
张倩倩,张兴赢.基于卫星和地面观测的2013年以来我国臭氧时空分布及变化特征[J]. 环境科学, 2019,40(3):1132-1142.Zhang Q Q, Zhang X Y. Ozone Spatial-temporal distribution and trend over China since 2013:Insight from satellite and surface observation[J]. Environmental Science, 2019,40(3):1132-1142.
|
[38] |
黄俊,廖碧婷,吴兑,等.广州近地面臭氧浓度特征及气象影响分析[J]. 环境科学学报, 2018,38(1):23-31.Huang J, Liao B T, Wu D, et al. Guangzhou ground level ozone concentration characteristics and associated meteorological factors[J]. Acta Scientiae Circumstantiae.
|
[39] |
Levy H. Normal atmosphere:Large radical and formaldehyde concentrations predicted[J]. Science, 1971,173(3992):141-143.
|
[40] |
Herndon S C, Onasch T B, Wood E C, et al. Correlation of secondary organic aerosol with odd oxygen in Mexico City[J]. Geophysical Research Letters, 2008,35(15),doi:15810.11029/12008GL034058.
|
[41] |
Cheung V T F, Wang T. Observational study of ozone pollution at a rural site in the Yangtze Delta of China[J]. Atmospheric Environment, 2001,35(29):4947-4958.
|
[42] |
李红丽,王杨君,黄凌,等.中国典型城市臭氧与二次气溶胶的协同增长作用分析[J]. 环境科学学报, 2020,40(12):4368-4379.Li H L, Wang Y J, Huang L, et al. Analysis of synergistic growth effects between ozone and secondary aerosol in typical cities in China[J]. Acta Scientiae Circumstantiae, 2020,40(12):4368-4379.
|
[43] |
Cheng H, Guo H, Wang X, et al. On the relationship between ozone and its precursors in the Pearl River Delta:Application of an observation-based model (OBM)[J]. Environmental Science & Pollution Research, 2010,17(8):1491-1492.
|
[44] |
庄欣,黄晓锋,陈多宏,等.基于日变化特征的珠江三角洲大气污染空间分布研究[J]. 中国环境科学, 2017,37(6):2001-2006.Zhuang X, Huang X F, Chen D H, et al. Studies on spatial distribution of air pollution in Pearl River Delta based on diurnal variation characteristics[J]. China Environmental Science, 2017,37(6):2001-2006.
|
[45] |
邓雪娇,周秀骥,吴兑,等.珠江三角洲大气气溶胶对地面臭氧变化的影响[J]. 中国科学:地球科学, 2011,41(1):93-102.Deng X J, Zhou X J, Wu D, et al. Effect of atmospheric aerosol on surface ozone variation over the Pearl River Delta region[J]. Sci China Earth Sci, 2011,41(1):93-102.
|
[46] |
唐斌雁.京津冀地区近地层臭氧和颗粒物污染相互影响研究[D]. 成都:成都信息工程大学, 2018.Tang Y B. Study on the Interaction between ozone and particulate matter pollution in the Beijing-Tianjin-Hebei Region[D]. Chengdu:Chengdu University of Information Technology, 2018.
|
[47] |
关清,郑有飞,赵辉,等.PM2.5及气象要素对乌鲁木齐市臭氧的影响[J]. 科学技术与工程, 2019,19(10):275-281.Guan Q, Zheng Y F, Zhao H, et al. Effects of PM2.5 and meteorological factors on ozone in urumqi[J]. Science Technology and Engineering, 2019,19(10):275-281.
|
[48] |
迟茜元.华北地区臭氧与二次无机气溶胶的时空分布与形成转化机制研究[D]. 中国科学技术大学, 2018.Chi Q Y. The study on spatial-temporal variations and formation mechanisms of ozone and secondary inorganic aerosols in North China Plain[D]. University of Science and Technology of China, 2018.
|
[49] |
朱思虹.气溶胶对短波辐射和近地面臭氧产生的影响研究[D]. 北京:中国气象科学研究院, 2018.Zhu S H. Effects of aerosol on shortwave radiation and ozone generation near surface[D]. Beijing:Chinese Academy of Meteorological Sciences, 2018.
|
[50] |
Zhu J, Chen L, Liao H, et al. Correlations between PM2.5 and ozone over China and associated underlying reasons[J]. Atmosphere, 2019, 10(7):352.
|
[51] |
Giles D M, Holben B N, Eck T F, et al. An analysis of Aeronet aerosol absorption properties and classifications representative of aerosol source regions[J]. Journal of Geophysical Research:Atmospheres, 2012,117(D17):127-135.
|
[52] |
贺欣,陆春松,朱君.中国地区气溶胶类型变化及其辐射效应研究[J]. 环境科学学报, 2020,40(11):4070-4080.He X, Lu C S, Zhu J. A study of the spatiotemporal variation in aerosol types and their radiation effect in China[J]. Acta Scientiae Circumstantiae, 2020,40(11):4070-4080.
|
[53] |
高庆先,任阵海,姜振远.人为排放气溶胶引起的辐射强迫研究[J]. 环境科学研究, 1998,11(1):5-9.Gao Q X, Ren Z H, Jiang Z Y. Research on radiation forcing caused by man-made emission of atmospheric aerosol[J]. Research of Environmental Sciences, 1998,11(1):5-9.
|
[54] |
吕睿.中国东部大气气溶胶光学特性及直接辐射强迫研究[D]. 南京信息工程大学, 2018.Lv R. Aerosol optical properties and direct radiative forcing over Eastern China[D]. Nanjing University of Information Science & Technology, 2018.
|
[55] |
Benas N, Mourtzanou E, Kouvarakis G, et al. Surface ozone photolysis rate trends in the Eastern Mediterranean:Modeling the effects of aerosols and total column ozone based on Terra MODIS data[J]. Atmospheric Environment, 2013,74:1-9.
|
[56] |
Castro T, Madronich S, Rivale S, et al. The influence of aerosols on photochemical smog in Mexico City[J]. Atmospheric Environment, 2001,35(10):1765-1772.
|
[57] |
Dickerson R R, Kondragunta S, Stenchikov G, et al. The impact of aerosols on solar ultraviolet radiation and photochemical smog[J]. Science, 1997,278(5339):827-830.
|
[58] |
张远航,郑君瑜,陈长虹,等.中国大气臭氧污染防治蓝皮书[R]. 南京:中国环境科学学会臭氧污染控制专业委员会, 2020.Zhang Y H, Zheng J Y, Chen C H, et al. China blue book on the prevention and control of atmospheric ozone pollution[R]. Nanjing:Ozone Pollution Control Committee, Chinese Society for Environmental Sciences, 2020.
|
[59] |
王宇骏,黄新雨,裴成磊,等.广州市近地面臭氧时空变化及其生成对前体物的敏感性初步分析[J]. 安全与环境工程, 2016,23(3):83-88.Wang Y J, Huang X Y, Pei C L, et al. Spatial-temporal variations of ground-level ozone and preliminary analysis on the sensitivity of ozone formation to precursors in Guangzhou City[J]. Safety and Environmental Engineering, 2016,23(3):83-88.
|
[60] |
刘晓环.我国典型地区大气污染特征的数值模拟[D]. 济南:山东大学, 2010.Liu X H. Model simulation of air pollution characteristics at representative areas in China[D]. Jinan:Shandong University, 2010.
|
[61] |
庄立跃,陈瑜萍,范丽雅,等.基于OMI卫星数据和MODIS土地覆盖类型数据研究珠江三角洲臭氧敏感[J]. 环境科学学报, 2019, 39(11):3581-3592.Zhuang L Y, Chen Y P, Fan L Y, et al. Study on the ozone formation sensitivity in the Pearl River Delta based on OMI satellite data and MODIS land cover type products[J]. Acta Scientiae Circumstantiae, 2019,39(11):3581-3592.
|
[1] |
WANG Zhong-jie, HUO Juan, DU Hui-yun, WANG Da-wei, LI Jie, ZHANG Chuan-bing, ZHANG Tao, WANG Wei, WANG Hai-bo, YANG Wen-yi. Long term characteristics and potential sources of PM2.5 in Rizhao City from 2015 to 2019[J]. CHINA ENVIRONMENTAL SCIENCECE, 2021, 41(9): 3969-3980. |
|
|
|
|