|
|
Advances in research and application of intelligent municipal solid waste classification technologies |
LIANG Rui1, CHEN Guan-yi1,2,3, YAN Bei-bei1,4, SUN Yu-nan2, TAO Jun-yu2 |
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; 2. School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; 3. School of Science, Tibet University, Lhasa 850012, China; 4. Tianjin Key Laboratory of Biomass Wastes Utilization, Tianjin Engineering Research Center of Bio Gas/Oil Technology, Tianjin 300072, China |
|
|
Abstract The growing annual disposal volume of municipal solid waste (MSW) is causing serious environmental problem worldwide. Different components in MSW have their own appropriate treatment and utilization techniques, thus effective MSW classification is significantly important. While current classification methods in China is primarily artificial classification, which have a lot of disadvantages such as low efficiency, high cost and low accuracy. These bottlenecks could be excellently solved by intelligent and automatic classification technologies. The recent distribution feature and growing trend of MSW in China's representative cities were briefly introduced, and the existing intelligent MSW classification technologies in six categories of principles were analyzed. These categories included density, electricity, magnetism, image, acoustic and spectrum. The practical applications of intelligent MSW classification technologies were also introduced. Finally, the threats and opportunities faced with intelligent MSW classification technologies were analyzed.
|
Received: 23 May 2021
|
|
|
|
|
[1] |
中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020. National Bureau of Statistics of China. China statistical yearbook [M]. Beijing: China Statistics Press, 2020.
|
[2] |
李英华, 杨朝旭, 伯鑫, 等. 生活垃圾焚烧厂周边土壤中PCDD/Fs及重金属含量[J]. 中国环境科学, 2020, 40(2): 726-735. Li Y H, Yang Z X, Bo X, et. al. PCDD/Fs levels and heavy metal characteristics in soils surrounding typical municipal waste incineration plants in the Chengdu area. [J]. China Environmental Science. 2020, 40(2): 726-735.
|
[3] |
刘文浩. 新技术可回收电子废弃物中的关键金属[J]. 黄金科学技术, 2020, 28(2): 245. Liu W H. New technology recycles key metals from e-waste [J]. Gold Science and Technology, 2020, 28(2): 245.
|
[4] |
赵爱之. 废弃塑料回收方法概述[J]. 塑料科技, 2020, 48(9): 123-126. Zhao A Z. Reviewer on the recycling technique for waste plastic [J]. Plastics Science and Technology, 2020, 48(9): 123-126.
|
[5] |
文斐. 我国餐厨垃圾处理工艺技术路线选择与分析[J]. 环境与发展, 2020, 32(9): 107-109. Wen F. Selection and analysis of food waste treatment process in China [J]. Environment and Development, 2020, 32(9): 107-109.
|
[6] |
鲁斌, 龚凯, 蒋红与, 等. AnMBR用于餐厨垃圾和剩余污泥共发酵的性能研究[J]. 中国环境科学, 2021, 41(5): 2290-2298. Lu B, Gong K, Jiang H Y, et. al. Performance of AnMBR for the co-digestion of food waste and waste activity sludge [J]. China Environmental Science. 2021, 41(5): 2290-2298.
|
[7] |
张海龙, 李祥平, 齐剑英, 等. 华南某市生活垃圾组成特征分析[J]. 环境科学, 2015, 36(1): 325-332. Zhang H L, Li X P, Qi J Y, et. al. Analysis of composition characteristics of municipal solid waste in South China [J]. Environmental Science, 2015, 36(1): 325-332.
|
[8] |
王建伟, 郑鹏, 崔慧. 等离子体气化熔融/垃圾处理系统[J]. 新能源进展, 2020, 8(5): 391-395. Wang J W, Zhen P, Cui H, et. al. Plasma gasification melting/waste treatment system[J]. Advances in New and Renewable Energy, 2020, 8(5): 391-395.
|
[9] |
王丹丹, 菅利荣, 付帅帅. 城市生活垃圾分类回收治理激励监督机制研究[J]. 中国环境科学, 2020, 40(7): 3188-3195. Wang D D, Jian L R, Fu S S, et. al. Incentive and supervision mechanism of municipal solid waste separation and recycling [J]. China Environmental Science, 2020, 40(7): 3188-3195.
|
[10] |
任越, 杨俊杰. 生活垃圾分类处理方式的生态效率评价[J]. 中国环境科学, 2020, 40(3): 1166-1175. Ren Y, Yang J J. Eco-efficiency assessment of municipal solid waste sorting treatment mode [J]. China Environmental Science, 2020, 40(3): 1166-1175.
|
[11] |
梅书枰. 基于MobileNetV3公共垃圾分类系统[D]. 武汉: 武汉纺织大学, 2020. Mei S P. Public garbage classification system based on MobileNetv3 [D]. Wuhan: Wuhan Textile University, 2020.
|
[12] |
陈禹行, 庄志凌, 曾杰. 我国垃圾分类现状与智能分类垃圾系统设计分析[J]. 电子技术与软件工程, 2019, (23): 99-102. Chen Y H, Zhuang Z L, Zeng J, et. al. Analysis of garbage classification situation and intelligent garbage classification system in China [J]. Electronic Technology & Software Engineering, 2019, (23): 99-102.
|
[13] |
周滢慜. 基于机器视觉的生活垃圾智能分拣系统的设计与实现[D]. 哈尔滨: 哈尔滨工业大学, 2018. Zhou H Y. Design and implementation of intelligent garbage Sorting system based on machine vision [D]. Harbin: Harbin Institute of Technology, 2018.
|
[14] |
CJ/T 313-2009中华人民共和国城镇建设行业标准: 生活垃圾采样和分析方法[S].
|
[15] |
Wu C L X. Factors influencing municipal solid waste generation in China: A multiple statistical analysis study [J]. Waste Management & Research, 2010, 29(4): 371-378.
|
[16] |
李丹, 陈冠益, 马文超, 等. 中国村镇生活垃圾特性及处理现状[J]. 中国环境科学, 2018, 38(11): 4187-4197. Li D, Chen G Y, Ma W C, et al. Characteristics and treatment status of rural solid waste in China [J]. China Environmental Science, 2018, 38(11): 4187-4197.
|
[17] |
李美叶, 郑振涛. 济南市生活垃圾性状变化趋势及处理技术多元化转型分析[J]. 环境卫生工程, 2014, 22(4): 62-64. Li M Y, Zhen Z T. Property change of domestic waste and diversified transition of treatment technologies in Jinan [J]. Environmental Sanitation Engineering, 2014, 22(4): 62-64.
|
[18] |
张益, 杨承休. 上海市区生活垃圾产生量及成分分析[J]. 环境卫生工程, 2000, (3): 104-106. Zhang Y, Yang C X. The output and component analysis of domestic solid waste in Shanghai residential area. [J]. Environmental Sanitation Engineering, 2000, (3): 104-106.
|
[19] |
阚宝鹏. 青岛市城市生活垃圾处理现状, 理化特性及处置方式研究[D]. 青岛: 青岛大学, 2017. Kan B P. Study on treatment status, physical and chemical characteristics and disposal methods of municipal solid waste in Qingdao [D]. Qingdao: Qingdao University, 2017.
|
[20] |
王桂琴, 张红玉, 王典, 等. 北京市城区生活垃圾组成及特性分析[J]. 环境工程, 2018, 36(4): 132-136. Wang G Q, Zhang H Y, Wang D, et al. Physical composition and characteristics analysis of the municipai solid waste (MSW) in Beijing [J]. Environmental Engineering, 2018, 36(4): 132-136.
|
[21] |
程伟. 北京城区和农村地区生活垃圾组成特性的对比分析[J]. 再生资源与循环经济, 2020, 13(1): 17-22. Chen W. Comparative analysis of physical composition and characteristics of domestic waste in urban and rural areas of Beijing [J]. Recyclable Resources and Circular Economy, 2020, 13(1): 17-22.
|
[22] |
Wang H, Wang C. Municipal solid waste management in Beijing: characteristics and challenges [J]. Waste Management & Research, 2013, 31(1): 67-72.
|
[23] |
余金保, 李润华. 固体废物分选方法选择及提高分选效率途径的研究[J]. 景德镇高专学报, 2011, 26(2): 8-9. Yu J B, Li R H. Study on selection of solid waste separation methods and ways to improve separation efficiency [J]. Journal of Jingdezhen University. 2011, 26(2): 8-9.
|
[24] |
刘毅. 我国生活垃圾自动分选技术及设备发展现状研究[J]. 广东科技, 2019, 28(9): 60-62. Liu Y. Research on development status of automatic separation technology and Equipment of Domestic garbage in China [J]. Guangdong Science & Technology, 2019, 28(9): 60-62.
|
[25] |
李东阳. Android手机上图像分类技术的研究[D]. 北京: 北京邮电大学, 2013. Li D Y. Research on image classification technology on Android Mobile phone [D]. Beijing: Beijing University of Posts and Telecommunications, 2013.
|
[26] |
Lopez-Caudana E, Quiroz O, Rodríguez A, et al. Classification of materials by acoustic signal processing in real time for NAO robots [J]. International Journal of Advanced Robotic Systems, 2017, 14(4): 256009493.
|
[27] |
苗蓉丽. 红外光谱定性分析聚酰胺(尼龙)品种[C]//中国光学学会光谱委员会、中国化学会物理化学委员会. 第九届全国分子光谱学术报告会论文集. 贵阳, 1996: 195-198. Miao R L. Qualitative analysis of polyamide (nylon) varieties by infrared spectroscopy [C]//Spectral Committee of Chinese Optical Society and Physical Chemistry Committee of Chinese Chemical Society. Proceedings of the 9th National Symposium on Molecular Spectroscopy. Guiyang, 1996, 195-198.
|
[28] |
黄昌武. 国外城市垃圾及治理动态[J]. 环境科学动态, 1984, (5): 2-6. Huang C W. Foreign city refuse and control trends [J]. Environment and Sustainable Development, 1984, (5): 2-6.
|
[29] |
张仲燕, 赵根妹, 梁琥琪, 等. 聚酯(PET)废塑料分离回收方法研究[J]. 环境科学, 1994, (3): 26-29. Zhang Z Y, Zhao G M, Liang H Q, et al. Study on separation and recovery of PET waste plastics [J]. Environmental Science, 1994, (3): 26-29.
|
[30] |
CJ/T 5013.1-1995垃圾分选机垃圾滚筒筛[S]. CJ/T 50131-1995 Garbage roller screen of garbage separator [S].
|
[31] |
高春雨, 郭仁宁, 纪俊红. 城市生活垃圾风力分选效率研究[J]. 辽宁工程技术大学学报, 2005, (S1): 278-279. Gao C Y, Guo R N, Ji J H. Investigation of efficiency on sorting municipal solid waste by wind power [J]. Journal of Liaoning Technical University. 2005, (S1): 278-279.
|
[32] |
杨学权, 蔡玉良, 陈蕾, 等. 生活垃圾重力分选机的开发计算[J]. 水泥工程, 2010, (2): 43-47. Yang X Q, Cai Y L, Chen L, et al. Development calculation of urban garbage gravity separator [J]. Cement Engineering, 2010, (2): 43-47.
|
[33] |
刘剑波, 张利珍, 蒋振山, 等. 垃圾分选设备中的新技术进展[J]. 科技信息(学术研究), 2006, (6): 16-18. Liu J B, Zhang L Z, Jiang Z S, et. al. New technology progress in garbage separation equipment [J]. Science and Technology Information (Academic Research), 2006, (6): 16-18.
|
[34] |
普拉克辛и н, 江缵高. 科学研究工作与选矿技术的成就[J]. 有色金属, 1959, (16): 19-22. Plaksin и н, Jiang Z G. Scientific Research and beneficiation technology achievements [J]. Nonferrous Metals Engineering, 1959, (16): 19-22.
|
[35] |
李湘, 方松刚, 徐娟, 等. 废旧塑料的分离提纯工艺—日杂, 家电及玩具类[J]. 塑料工业, 2020, 48(10): 165-169. Li X, Fang S G, Xu J, et. al. Separation and purification process of waste plastics-daily sundries, household appliance and toys [J]. China Plastics Industry, 2020, 48(10): 165-169.
|
[36] |
张洪建, 王全强, 宋振玲. 废弃PCB中铝的涡电流分选研究[J]. 河北建筑科技学院学报, 2005, (4): 12-15. Zhang H J, Wang Q Q, Song Z L. Eddy current separation of aluminum from discarded PCBs [J]. Journal of Hebei University of Engineering, 2005, (4): 12-15.
|
[37] |
王生进. 计算机视觉的发展之路[J]. 人工智能, 2017, (6): 8-13. Wang S J. The development of computer vision [J]. AI-View, 2017, (6): 8-13.
|
[38] |
蔡愉祖. 计算机视觉概述[J]. 系统工程与电子技术, 1986, (1): 60-68. Cai Y Z. Overview of computer vision [J]. System Engineering and Electronics, 1986, (1): 60-68.
|
[39] |
汪启伟. 图像直方图特征及其应用研究[D]. 合肥: 中国科学技术大学, 2014. Wang Q W. Study on image histogram feature and application [D]. Hefei: University of Science and Technology of China, 2014.
|
[40] |
曹莉华, 柳伟, 李国辉. 基于多种主色调的图像检索算法研究与实现[J]. 计算机研究与发展, 1999, (1): 97-101. Cao L H, Liu W, Li G H. Research and implementation of an image retrieval oalgorithm based on multiple dominant colors [J]. Journal of Computer Research and Development, 1999, (1): 97-101.
|
[41] |
范亭亭. 基于颜色特征的回收塑料瓶分类算法研究[D]. 邯郸: 河北工程大学, 2018. Fan T T. Research on classification algorithm of recycled plastic bottles based on color features [D]. Handan: Hebei University of Engineering, 2018.
|
[42] |
刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622-635. Liu L, Kuang G Y. Overview of image textural feature extraction methods [J]. Journal of Image and Graphics, 2009, 14(4): 622-635.
|
[43] |
王惠明, 史萍. 图像纹理特征的提取方法[J]. 中国传媒大学学报(自然科学版), 2006, (1): 49-52. Wang H M, Shi P. Methods to extract images texture features [J]. Journal of Communication University of China (Science and Technology), 2006, (1): 49-52.
|
[44] |
万震, 邵卫荣, 翁红星. 灰度行程统计法分析脂肪肝患者超声图像的研究[J]. 中国医药科学, 2011, 1(23): 122-123. Wan Z, Shao W R, Weng H X. Analysis of ultrasonic images of patients with fatty liver by gray stroke statistics [J]. China Medicine and Pharmacy. 2011, 1(23): 122-123.
|
[45] |
刁哲军, 杨晓波, 冯冀宁. 利用同步自回归模型和小波特征进行纹理图像分割[J]. 河北师范大学学报, 2005, (5): 477-480. Diao Z J, Yang X B, Feng J N. Texture segmentation using simultaneous autoregressive model and wavelet feature [J]. Journal of Hebei Normal University (Natural Science), 2005, (5): 477-480.
|
[46] |
陈易平, 孙道宗, 朱岸青. 基于二维马尔可夫过程全局模型的图像压缩[J]. 光学技术, 2020, 46(5): 634-640. Chen Y P, Sun S Z, Zhu A Q. Image compression based on global model of two-dimensional Markov process [J]. Optical Technique, 2020, 46(5): 634-640.
|
[47] |
吴冰, 杨翠, 魏文英. Gabor滤波与数学形态学结合下激光图像亚像素边缘检测[J]. 激光杂志, 2020, 41(11): 110-114. Wu B, Yang C, Wei W Y. Laser image sub-pixel edge detection combined with Gabor filter and mathematical morphology [J]. Laser Journal, 2020, 41(11): 110-114.
|
[48] |
姚西成, 冷昕云. 基于线性随机Radon变换以及傅里叶变换的图像加密[J]. 电脑与信息技术, 2020, 28(6): 11-13. Yao X C, Leng X Y. Image encryption based on linear random radon transform and fourier transform [J]. Computer and Information Technology. 2020, 28(6): 11-13.
|
[49] |
张翔. 图像识别的形状特征提取算法研究及实现[D]. 西安: 西北大学, 2018. Zhang X. Research and implementation of shape feature extraction algorithm for image recognition [D]. Xi'an: Northwest University, 2018.
|
[50] |
王吉林, 赵力. 数字图像形状特征提取的研究[J]. 微电子学与计算机, 2010, 27(5): 118-120. Wang J L, Zhao L. Research on extracting shape feature of digital image [J]. Microelectronics & Computer, 2010, 27(5): 118-120.
|
[51] |
郭志强. 基于区域特征的小波变换图像融合方法[J]. 武汉理工大学学报, 2005, 27(2): 65-67, 71. Guo Z Q. Wavelet transform image fusion based on regional features [J]. Journal of Wuhan University of Technology, 2005, 27(2): 65-67, 71.
|
[52] |
杨全银. 基于Hough变换的图像形状特征检测[D]. 济南: 山东大学, 2009. Yang Q Y. Image shape feature detection based on Hough transform [D]. Jinan: Shandong University, 2009.
|
[53] |
郑冬婷, 董赟, 朱星弛, 等. 一种用于图像检索的新型空间关系特征[J]. 计算机工程与应用, 2019, 55(10): 1-8. Zhen D T, Dong B, Zhu X C, et al. New spatial relational feature for image retrieval[J]. Computer Engineering and Applications, 2019, 55(10): 1-8.
|
[54] |
程显毅, 李小燕, 任越美. 图像空间关系特征描述[J]. 江南大学学报(自然科学版), 2007, (6): 637-641. Cheng X Y, Li X Y, Ren Y M. The summary on description of space relation in image[J]. Journal of Jiangnan University (Natural Science Edition), 2007, (6): 637-641.
|
[55] |
黄国维. 基于深度学习的城市垃圾桶智能分类研究[D]. 淮南: 安徽理工大学, 2019. Huang G W. Research on intelligent classification of urban waste cans based on deep learning [D]. Huainan: Anhui University of Science and Technology, 2019.
|
[56] |
刘雅璇, 潘万彬. 基于自我训练的长效垃圾分类方法[J]. 中国图象图形学报, 2019, 24(5): 773-781. Liu Y X, Pan W B. Long-term waste classification based on self-training [J]. Journal of Image and Graphics, 2019, 24(5): 773-781.
|
[57] |
Sharan L, Liu C, Rosenholtz R, et al. Recognizing materials using perceptually inspired features [J]. International Journal of Computer Vision, 2013, 103(3): 348-371.
|
[58] |
张方超, 董振, 张栋, 等. 基于图像视觉的垃圾分类机器人识别控制系统算法设计[J]. 电子测量技术, 2019, 42(20): 63-67. Zhang F C, Dong Z, Zhang D, et al. Algorithm design of garbage classification robot recognition control system based on image vision [J]. Electronic Measurement Technology, 2019, 42(20): 63-67.
|
[59] |
李力涵. 基于计算机视觉的智能废料瓶分类系统[D]. 杭州: 浙江工商大学, 2019. Li L H. Computer vision-based intelligent waste bottle classification system [D]. Hangzhou: Zhejiang Gongshang University, 2019.
|
[60] |
Adedeji O, Wang Z. Intelligent waste classification system using deep learning convolutional neural network [J]. Procedia Manufacturing, 2019, 35: 607-612.
|
[61] |
吴健, 陈豪, 方武. 基于计算机视觉的废物垃圾分析与识别研究[J]. 信息技术与信息化, 2016, (10): 81-83. Wu J, Chen H, Fang W. Research on waste analysis and identification based on computer vision [J]. Information Technology and Informatization, 2016, (10): 81-83.
|
[62] |
陶威远, 姜太平, 郑一然. 基于Faster R-CNN算法的垃圾分类识别系统[J]. 网络安全技术与应用, 2020, (3): 45-47. Tao W Y, Jiang T P, Zhen Y R. Garbage classification and recognition system based on Faster R-CNN algorithm [J]. Network Security Technology & Application, 2020, (3): 45-47.
|
[63] |
秦斌斌, 何级. 基于卷积神经网络的垃圾分类研究[J]. 无线通信技术, 2019, 28(3): 51-56. Qin B B, He J. Classification of garbage based on convolutional neural network[J]. Wireless Communication Technology, 2019, 28 (3): 51-56.
|
[64] |
彭昕昀, 李嘉乐, 李婉, 等. 基于SSD算法的垃圾识别分类研究[J]. 韶关学院学报, 2019, 40(6): 15-20. Peng X Y, Li J L, Li W, et al. Research on garbage identification and classification based on SSD algorithm [J]. Journal of Shaoguan University, 2019, 40(6): 15-20.
|
[65] |
Wang Z, Peng B, Huang Y, et al. Classification for plastic bottles recycling based on image recognition [J]. Waste Management, 2019, 88: 170-181.
|
[66] |
吴开兴, 范亭亭, 李丽宏, 等. 基于FPCA和PSOSVM回收塑料瓶分类[J]. 计算机工程与设计, 2018, 39(11): 3555-3558. Wu K X, Fan T T, Li L H, et al. Classification of recycled plastic bottles based on FPCA and PSOSVM [J]. Computer Engineering and Design, 2018, 39(11): 3555-3558.
|
[67] |
陈高泉. 排水管道超声波成像检测系统研究与设计[D]. 沈阳: 沈阳工业大学, 2005. Chen G Q. Researching and designing of drainage pipe ultrasonic imaging testing[D]. Shenyang: Shenyang University of Technology, 2005.
|
[68] |
Sanaee S A, Bakker M. Ultrasound for monitoring and quality inspection in MDS plastics recycling [A]//Turning waste into ideas [C]. Lisbon, Portugal: ISWA/APESB2009, 2009: 1-10.
|
[69] |
Escrig J, Woolley E, Simeone A, et al. Monitoring the cleaning of food fouling in pipes using ultrasonic measurements and machine learning [J]. Food Control, 2020, 116: 107309.
|
[70] |
刘强, 陈福兰. 基于倒谱与BP网络的船舶生活垃圾分类方法研究[J]. 南通航运职业技术学院学报, 2016, 15(1): 34-38. Liu Q, Chen F L. Ultrasound for monitoring and quality inspection in MDS plastics recycling [J]. Journal of Nantong Vocational & Technical Shipping College, 2016, 15(1): 34-38.
|
[71] |
Lu G, Wang Y, Yang H, et al. One-dimensional convolutional neural networks for acoustic waste sorting [J]. Journal of Cleaner Production, 2020, 271: 122393.
|
[72] |
Liu K, Tian D, Li C, et al. A review of laser-induced breakdown spectroscopy for plastic analysis [J]. TrAC Trends in Analytical Chemistry, 2019, 110: 327-334.
|
[73] |
陈玲玲. 基于拉曼光谱的塑料检测技术与识别算法研究[D]. 杭州: 中国计量大学, 2018. Chen L L. Study on detection method and recognition algorithm of plastics based on raman spectroscopy [D]. Hangzhou: China Jiliang University, 2018.
|
[74] |
Stefas D, Gyftokostas N, Bellou E, et al. Laser-induced breakdown spectroscopy assisted by machine learning for plastics/polymers identification [J]. Atoms, 2019, 7(3): 79.
|
[75] |
Anzano J, Bonilla B, Montull-Ibor B, et al. Plastic identification and comparison by multivariate techniques with laser-induced breakdown spectroscopy [J]. Journal of Applied Polymer Science, 2011, 121(5): 2710-2716.
|
[76] |
Grégoire S, Boudinet M, Pelascini F, et al. Laser-induced breakdown spectroscopy for polymer identification [J]. Analytical and Bioanalytical Chemistry. 2011, 400(10): 3331-3340.
|
[77] |
Godoi Q, Leme F O, Trevizan L C, et al. Laser-induced breakdown spectroscopy and chemometrics for classification of toys relying on toxic elements [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2011, 66(2): 138-143.
|
[78] |
Tao J, Liang R, Li J, et al. Fast characterization of biomass and waste by infrared spectra and machine learning models [J]. Journal of Hazardous Materials, 2020, 387: 121723.
|
[79] |
Yu Y, Guo L B, Hao Z Q, et al. Accuracy improvement on polymer identification using laser-induced breakdown spectroscopy with adjusting spectral weightings [J]. Optics Express, 2014, 22(4): 3895.
|
[80] |
Liu C, Gu J. Discriminative illumination: Per-pixel classification of raw materials based on optimal projections of spectral BRDF [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 86-98.
|
[81] |
Roh S, Park S, Oh S, et al. Development of intelligent sorting system realized with the aid of laser-induced breakdown spectroscopy and hybrid preprocessing algorithm-based radial basis function neural networks for recycling black plastic wastes [J]. Journal of Material Cycles and Waste Management, 2018, 20(4): 1934-1949.
|
[82] |
Shameem K M M, Choudhari K S, Bankapur A, et al. A hybrid LIBS-Raman system combined with chemometrics: an efficient tool for plastic identification and sorting [J]. Analytical and Bioanalytical Chemistry, 2017, 409(13): 3299-3308.
|
[83] |
刘红莎. 基于近红外光谱的废混合塑料识别研究[D]. 天津: 天津大学, 2013. Liu H S. Study on identification of mixed plastic wastes based on near infrared spectrum [D]. Tianjin: Tianjin University, 2013.
|
[84] |
孙倩倩. 激光探针技术塑料分类算法的研究[D]. 武汉: 华中科技大学, 2016. Sun Q Q. Research on plastics classification algorithms in laser-induced breakdown spectroscopy[D]. Wuhan: Huazhong University of Science and Technology, 2016.
|
[85] |
贺彦瑞. 基于LIBS光谱数据的定性与定量分析方法研究[D]. 西安: 西北大学, 2015. He Y D. Qualitative and quantitative analysis based on LIBS spectral data [D]. Xi'an: Northwest University, 2015.
|
[86] |
Gruber F, Gr hlert W, Wollmann P, et al. Classification of black plastics waste using fluorescence imaging and machine learning [J]. Recycling, 2019, 4(4): 40.
|
[87] |
孙倩倩, 杜敏, 郭连波, 等. 塑料激光诱导击穿光谱技术快速分类应用研究[J]. 光谱学与光谱分析, 2017, 37(7): 2205-2209. Sun Q Q, Du M, Guo L B, et al. Fast identification of plastics with laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis. 2017, 37(7): 2205-2209.
|
[88] |
于洋, 郝中骐, 李常茂, 等. 支持向量机算法在激光诱导击穿光谱技术塑料识别中的应用研究[J]. 物理学报, 2013, 62(21): 290-296. Yu Y, Hao Z Q, Li C M, et al. Research on application of support vector machine algorithm in plastic recognition by laser-induced breakdown spectroscopy[J]. Acta Physica Sinica, 2013, 62(21): 290-296.
|
[89] |
Sattmann R, M nch I, Krause H, et al. Laser-Induced Breakdown Spectroscopy for Polymer Identification [J]. Applied spectroscopy, 1998, 52(3): 456-461.
|
[90] |
Goode S R, Morgan S L, Hoskins R, et al. Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer [J]. Journal of Analytical Atomic Spectrometry, 2000, 15(9): 1133-1138.
|
[91] |
宋海声, 麻林召, 朱恩功, 等. 基于激光诱导击穿光谱与GA-BP神经网络对塑料分类识别[J]. 激光与光电子学进展, 2020, 57(15): 262-269. Song H S, Ma L Z, Zhu E G, et al. Plastic classification and recognition by laser-induced breakdown spectroscopy and GA-BP neural network [J]. Laser & Optoelectronics Progress, 2020, 57(15): 262-269.
|
[92] |
王茜蒨, 黄志文, 刘凯, 等. 基于主成分分析和人工神经网络的激光诱导击穿光谱塑料分类识别方法研究[J]. 光谱学与光谱分析, 2012, 32(12): 3179-3182. Wang Q Q, Huang Z W, Liu K, et. al. Classification of plastics with laser-induced breakdown spectroscopy based on principal component analysis and artificial neural network model [J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3179-3182.
|
[93] |
王翔, 赵南京, 殷高方, 等. 基于反向传播神经网络的激光诱导荧光光谱塑料分类识别方法研究[J]. 光谱学与光谱分析, 2019, 39(10): 3136-3141. Wang X, Zhao N J, Yin N F, et al. Classification and identification of plastic with laser-induced fluorescence spectroscopy based on back propagation neural network model [J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3136-3141.
|
[94] |
Küter A, Reible S, Geibig T, et al. THz imaging for recycling of black plastics [J]. tm-Technisches Messen, 2018, 85(3): 191-201.
|
[95] |
Lasheras R J, Bello-Gálvez C, Anzano J. Identification of polymers by libs using methods of correlation and normalized coordinates [J]. Polymer Testing. 2010, 29(8): 1057-1064.
|
[96] |
Anzano J, Casanova M, Bermúdez M, et al. Rapid characterization of plastics using laser-induced plasma spectroscopy (LIPS) [J]. Polymer Testing, 2006, 25(5): 623-627.
|
[97] |
英国真尚有. 芬兰实现机器人拣垃圾: 人工智能分拣系统实现有效分拣率达98% [Z]. http://www.51sensors.com/content/272.html. 2017-06-13/2021-09-27. GROUP LTD. Finland to achieve robot garbage sorting: artificial intelligence sorting system to achieve an effective sorting rate of 98% [Z]. http://www.51sensors.com/content/272.html. 2017-06-13/2021-09-27.
|
[98] |
MIT News. Robots that can sort recycling [Z]. https://news.mit.edu/2019/mit-robots-can-sort-recycling-0416. 2019-04-16/2020-11-08.
|
[99] |
关于全面禁止进口固体废物有关事项的公告2020年第53号[J]. 再生资源与循环经济, 2020, 13(12): 8. Notice on the comprehensive ban on the import of solid waste 2020 No. 53 [J]. Recyclable Resources and Circular Economy, 2020, 13(12): 8.
|
|
|
|