|
|
Structure and assembly mechanism of bacterial communities in deep soil contaminated by chlorinated hydrocarbons |
FAN Yan-ling1,2, GOU Ya-ling1,3, WANG Hong-qi1, LIU Zeng-jun2, XU He-feng4, YANG Shuo2, LIANG Jing2 |
1. College of Water Sciences, Beijing Normal University, Beijing 100875, China; 2. Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; 3. Institute of Resources and Environment, Beijing 100095, China; 4. Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China |
|
|
Abstract To study the structural characteristics and assembly mechanism of bacterial community in chlorinated hydrocarbons contaminated soil, unsaturated-zone soil within 2~10m was collected from different contaminated areas. Based on high-throughput sequencing technology, the bacterial community was analyzed and the main drivers, environmental influencing factors and assembly mechanism of the community structure changes were revealed. The results showed that the main driver of bacterial community structure change in the lightly polluted area was soil type. The β-diversity mainly influenced by species replacement with a contribution of 53.9%, and community composition significantly correlated with water-soluble sulfate(R=0.61, P=0.0002) and total organic carbon content(R=0.42, P=0.0005). Furthermore, the main driver of bacterial community structure change in the heavily polluted area was the degree of pollution. The β-diversity mainly influenced by the differences in abundance with a contribution of 52.9%, community composition was significantly correlated with trichloroethylene(R=0.17, P=0.0425), chloroform (R=0.22, P=0.0375), water-soluble sulfate (R=0.36, P=0.0074), total organic carbon (R=0.29, P=0.0168), and total nitrogen content (R=0.20, P=0.0130). Chlorinated hydrocarbons stress narrowed the niche width and reduced the niche overlap index of most species except adaptive ones, and led to an increase in the abundance of Proteobacteria, while that of Actinobacteriota, Firmicutes, and Chloroflexi decreased. In the soil with low pollutant concentration, the bacterial community assembly was dominated by random process, with a contribution of 65.6%. In the soil with high pollutant concentration, the random process decreased to 27.7%, and the assembly was dominated by deterministic process.
|
Received: 24 February 2023
|
|
|
|
|
[1] |
朱辉,叶淑君,吴吉春,等.中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021,28:26-34. Zhu H, Ye S J, Wu J C, et al. Characteristics of soil lithology and pollutants in typical contamination sites in China[J]. Earth Science Frontiers, 2021,28:26-34.
|
[2] |
US EPA. Superfund Remedy Report 17th Edition[R]. Washington District of Columbia:2023.
|
[3] |
Tiehm A, Schmidt K R. Sequential anaerobic/aerobic biodegradation of chloroethenes-aspects of field application[J]. Current Opinion in Biotechnology, 2011,22(3):415-421.
|
[4] |
张浩,邢志林,汪军,等.异养同化降解氯代烃的研究现状、微生物代谢特性及展望[J]. 生物工程学报, 2020,36(6):1083-1100. Zhang H, Xing Z L, Wang J, et al. Advances in microbial degradation of chlorinated hydrocarbons[J]. Chinese Journal of Biotechnology, 2020,36(6):1083-1100.
|
[5] |
刘帅,赵天涛,邢志林,等.氯代脂肪烃生物与非生物共促降解机制研究进展[J]. 生物工程学报, 2018,34(4):510-524. Liu S, Zhao T I, Xing Z L, et al. Advances in biotic and abiotic mutual promoting mechanism for chlorinated aliphatic hydrocarbons degradation[J]. Chinese Journal of Biotechnology, 2018,34(4):510-524.
|
[6] |
Hata J, Miyata N, Kim E S, et al. Anaerobic degradation of cis-1, 2-dichloroethylene and vinyl chloride by Clostridium sp. strain DC1isolated from landfill leachate sediment[J]. Journal of Bioscience and Bioengineering, 2004,97(3):196-201.
|
[7] |
Kim E S, Nomura I, Hasegawa Y, et al. Characterization of a newly isolatedcis-1,2-dichloroethylene and aliphatic compound-degrading bacterium, Clostridium sp. strain KYT-1[J]. Biotechnology and Bioprocess Engineering, 2006,11(6):553-556.
|
[8] |
Puigserver D, Herrero J, Nogueras X, et al. Biotic and abiotic reductive dechlorination of chloroethenes in aquitards[J]. Science of The Total Environment, 2022,816:151532.
|
[9] |
Furukawa K, Suyama A, Tsuboi Y, et al. Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51:a review[J]. Journal of Industrial Microbiology and Biotechnology, 2005,32(11):534-541.
|
[10] |
Kim E S, Nomura I, Hasegawa Y, et al. Characterization of a newly isolated cis-1,2-dichloroethylene and aliphatic compound-degrading bacterium, Clostridium sp. strain KYT-1[J]. Biotechnology and Bioprocess Engineering, 2006,11(6):553-556.
|
[11] |
Luijten M L G C, de Weert J, Smidt H, et al. Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2003,53:787-793.
|
[12] |
Shukla A K, Upadhyay S N, Dubey S K. Current trends in trichloroethylene biodegradation:a review[J]. Critical Reviews in Biotechnology, 2014,34(2):101-114.
|
[13] |
余锦涛,刘慧,李翠,等.氯代脂肪烃污染土壤微生物群落结构的主控因子[J]. 环境科学与技术, 2022,45:29-36. Yu J T, Liu H, Li C, et al. Research on main control factors of microbial community composition in CAHs-contaminated soi[J]. Environmental Science & Technology, 2022,45:29-36.
|
[14] |
甄丽莎,谷洁,胡婷,等.黄土高原石油污染土壤微生物群落结构及其代谢特征[J]. 生态学报, 2015,35(17):5703-5710. Zhen L S, Gu J, Hu T, et al. Microbial community structure and metabolic characteristics of oi-contaminated soil in the Loess Plateau[J]. Acta Ecologica Sinica, 2015,35(17):5703-5710.
|
[15] |
杨琴,赵敏,朱妍.陕北榆林定边县采油区土壤微生物群落结构的分子生态学研究[J]. 西北大学学报(自然科学版), 2014,44(6):943-946. Yang Q, Zhao M, Zhu Y. Molecular ecological research on microbial community structure of soil from oil fields of Dingbian, Yulin, Northern Shaanxi[J]. Journal of Northwest University (Natural Science Edition), 2014,44:943-946.
|
[16] |
Nemir A, David M M, Perrussel R, et al. Comparative phylogenetic microarray analysis of microbial communities in TCE-contaminated soils[J]. Chemosphere, 2010,80(5):600-607.
|
[17] |
Liu J Y, Liu Y, Dong W H, et al. Shifts in microbial community structure and function in polycyclic aromatic hydrocarbon contaminated soils at petrochemical landfill sites revealed by metagenomics[J]. Chemosphere, 2022,293:15.
|
[18] |
吴宇澄,骆永明,滕应,等.多氯联苯污染农田土壤的细菌群落结构差异及其影响因素[J]. 土壤学报, 2007,44(5):854-859. Wu Y C, Luo Y M, Teng Y, et al. Variation of microbial communities in PCBs contaminanted agricultural soils and influencing factors[J]. Acta Pedologica Sinica, 2007,44(5):854-849.
|
[19] |
Bertolet B L, Louden S I, Jones S E. Microbial community composition, and not pH, influences lake sediment function[J]. Ecosphere, 2022,13(5):e4091.
|
[20] |
GB50021-2001岩土工程勘察规范[S]. GB50021-2001 Code for investigation of geotechnical engineering[S].
|
[21] |
HJ 613-2011土壤干物质和水分的测定重量法[S]. HJ 613-2011 Soil-Determination of dry matter and water content Gravimetric method[S].
|
[22] |
HJ 962-2018土壤pH值的测定电位法[S]. HJ 962-2018 Soil-Determination of pH-Potentiometry[S].
|
[23] |
GB/T 19145-2003沉积岩中总有机碳的测定[S]. GB/T 19145-2003 Determination of total organic carbon in sedimentary rock[S].
|
[24] |
HJ 717-2014土壤质量全氮的测定凯氏法[S]. HJ 717-2014 Soil quality Determination of total nitrogen-Modified Kjeldahl method[S].
|
[25] |
HJ 632-2011土壤总磷的测定碱熔-钼锑抗分光光度法[S]. HJ 632-2011 Soil-Determination of Total Phosphorus by alkali fusion Mo-Sb Anti spectrophotometric method[S].
|
[26] |
HJ 635-2012土壤水溶性和酸溶性硫酸盐的测定重量法[S]. HJ 635-2012 Soil-Determination of water-soluble and acid-soluble sulfateGravimetric method[S].
|
[27] |
HJ 605-2011土壤和沉积物挥发性有机物的测定吹扫捕集/气相色谱-质谱法[S]. HJ 605-2011 Soil and sediment -Determination of volatile organic compounds Purge and trap gas chromatography/mass spectrometry method[S].
|
[28] |
Chen S, Zhou Y, Chen Y, et al. fastp:an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018,34(17):i884-i890.
|
[29] |
Magoč T, Salzberg S L. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics (Oxford, England), 2011,27(21):2957-2963.
|
[30] |
Edgar R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013,10(10):996-998.
|
[31] |
Stackebrandt E, Goebel B M. Taxonomic note:A place for DNA:DNA reassociation and 16s rRNA sequence analysis in the present species sefinition in bacteriology[J]. International Journal of Systematic Bacteriology, 1994,44(4):846-849.
|
[32] |
Wang Q, Garrity G M, Tiedje J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007,73(16):5261-5267.
|
[33] |
张金屯.数量生态学.第3版[M]. 北京:科学出版社, 2011:96-97. Zhang J T. Quantitative Ecology. 3rd Edition[M]. Beijing:Science Press, 2011:96-97.
|
[34] |
Harrison S, Ross S J, Lawton J H. Beta diversity on geographic gradients in Britain[J]. Journal of Animal Ecology, 1992,61:151-158.
|
[35] |
Baselga A. Partitioning the turnover and nestedness components of beta diversity[J]. Global Ecology and Biogeography (Global Ecol Biogeogr), 2010,19(1):134-143.
|
[36] |
斯幸峰,赵郁豪,陈传武,等.Beta多样性分解:方法、应用与展望[J]. 生物多样性, 2017,25(5):464-480. Si X F, Zhao Y H, Chen C W, et al. Beta-diversity partitioning:methods, applications and perspectives[J]. Biodiversity Science, 2017, 25(5):464-80.
|
[37] |
王艳红,郝兆,薛文凯,等.纳木措不同水文期水体可培养酵母菌影响因素分析[J]. 中国环境科学, 2023,43(4):2028-2038. Wang Y H, Hao Z, Xue W K, et al. Study on environmental factors affecting culturable yeast community structure during differenthydrological periods in Nam Co Lake[J]. China Environmental Science, 2023,43(4):2028-2038.
|
[38] |
徐紫娟,李文红,武利军,等.栽培绿狐尾藻的鱼塘底泥菌群结构与优势属生态位特征分析[J]. 基因组学与应用生物学, 2021,40(3):1196-1204. Xu Z J, Li W H, Wu L J, et al. Analysis of Bacterial Community Structure and Niche Characteristics of theFishpond Sediment Under the Cultivation of Myriophyllum elatinoides[J]. Genomics and Applied Biology, 2021,40(3):1196-1204.
|
[39] |
Wathne J A, Haug T, Lydersen C. Prey preference and niche overlap of ringed seals Phoca hispida and harp seals P. groenlandica in the Barents Sea[J]. Marine Ecology Progress Series, 2000,194:233-239.
|
[40] |
Chesson P. Mechanisms of maintenance of species diversity[J]. Environmental Science, 2000,31:343-366.
|
[41] |
Fargione J, Brown C S, Tilman D. Community assembly and invasion:An experimental test of neutral versus niche processes[J]. Environmental Science, 2003,100(15):8916-8920.
|
[42] |
Zhou J Z, Ning D L. Stochastic Community Assembly:Does It Matter in Microbial Ecology?[J]. Microbiology and Molecular Biology Reviews, 2017,81(4):e00002-17.
|
[43] |
Chave J. Neutral theory and community ecology[J]. Neutral theory in community ecology, 2004,7(3):241-253.
|
[44] |
Langenheder S, Székely A J. Species sorting and neutral processes are both important during the initial assembly of bacterial communities[J]. The Multidisciplinary Journal of Microbial Ecology Journal, 2011,5:1086-1094.
|
[45] |
Sloan W T, Lunn M K, Woodcock S, et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure[J]. Environmental microbiology, 2006,8(4):732-740.
|
[46] |
Vellend M, Srivastava D S, Anderson K M, et al. Assessing the relative importance of neutral stochasticity in ecological communities[J]. OIKOS, 2014,123(12):1420-1430.
|
[47] |
Mo Y, Peng F, Gao X, et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir[J]. Microbiome, 2021, 9(1):128.
|
[48] |
Wu W, Lu H P, Sastri A, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities[J]. The lnternational Society for Microbial Ecology Journal, 2018,12(2):485-494.
|
[49] |
Cao H, Chen R, Wang L, et al. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale[J]. Scientific Reports, 2016,6(1):25815.
|
[50] |
Lundberg D S, Lebeis S L, Paredes S H, et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012,488(7409):86-90.
|
[51] |
Bai R, Wang J T, Deng Y, et al. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers[J]. Frontiers in microbiology, 2017,8.
|
[52] |
Bastida F, Eldridge D J, García C, et al. Soil microbial diversity- biomass relationships are driven by soil carbon content across global biomes[J]. The ISME Journal, 2021,15(7):2081-2091.
|
[53] |
Fierer N. Embracing the unknown:disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 2017,15(10):579-590.
|
[54] |
Galand P E, Pereira O, Hochart C, et al. A strong link between marine microbial community composition and function challenges the idea of functional redundancy[J]. The Multidisciplinary Journal of Microbial Ecology Journal, 2018,12(10):2470-2478.
|
[55] |
Waldrop M P, Firestone M K. Response of microbial community composition and function to soil climate change[J]. Microb Ecol, 2006,52(4):716-724.
|
[56] |
郑一鸣,何小松,单光春,等.石油污染对场地中细菌群落的影响及其反馈机制[J]. 环境科学研究, 2021,34(4):987-995. Zheng Y M, He X S, Shan G C, et al. Effects of petroleum contamination on bacteria communities in field and its feedback mechanisms[J]. Research of Environmental Sciences, 2021,34(4):987-995.
|
[57] |
Spain A M, Krumholz L R, Elshahed M S. Abundance, composition, diversity and novelty of soil Proteobacteria[J]. The Multidisciplinary Journal of Microbial Ecology Journal, 2009,3(8):992-1000.
|
[58] |
孙仲平,吴乃瑾,杨苏才,等.微生物降解污染地下水中三氯乙烯的微宇宙试验研究[J]. 环境工程技术学报, 2021,11(2):298-306. Sun Z P, Wu N J, Yang S C, et al. Microcosm experimental study on microbial degradation of trichloroethylene in contaminated groundwate[J]. Journal of Environmental Engineering Technology, 2021,11(2):298-306.
|
[59] |
Koner S, Chen J S, Hsu B M, et al. Depth-resolved microbial diversity and functional profiles of trichloroethylene-contaminated soils for Biolog EcoPlate-based biostimulation strategy[J]. Journal of Hazardous Materials, 2022,424:127266.
|
[60] |
Gilbert J A, Steele J A, Caporaso J G, et al. Defining seasonal marine microbial community dynamics[J]. The ISME Journal, 2012,6(2):298-308.
|
[61] |
Vanwonterghem I, Jensen P D, Dennis P G, et al. Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters[J]. The Multidisciplinary Journal of Microbial Ecology Journal, 2014,8(10):2015-2028.
|
[62] |
Zhou J, Liu W, Deng Y, et al. Stochastic Assembly Leads to Alternative Communities with Distinct Functions in a Bioreactor Microbial Community[J]. mBio, 2013,4(2):e00584-12.
|
[63] |
Chase J M. Drought mediates the importance of stochastic community assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(44):17430-17434.
|
[64] |
Lan G, Quan F, Yang C, et al. Driving factors for soil fungal and bacterial community assembly in topical forest of China[J]. Applied Soil Ecology, 2022,177:104520.
|
[65] |
Dini-Andreote F, Stegen J C, van Elsas J D, et al. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(11):E1326-1332.
|
[66] |
Xun W, Li W, Xiong W, et al. Diversity-triggered deterministic bacterial assembly constrains community functions[J]. Nature Communications, 2019,10(1):3833.
|
|
|
|