|
|
Influencing factors and promoting measures of industrial pollution abatement and carbon reduction of the city clusters in the Yellow River basin |
KANG Zhe1, LI Wei1, LIU Wei1,2 |
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; 2. Guangzhou Municipal Ecological Environment Bureau Huangpu Branch, Guangzhou 510700, China |
|
|
Abstract The Hohhot-Baotou-Ordos-Yulin, Guanzhong Plain, and Zhongyuan city clusters were selected for this analysis of emission trends based on the measurement of industrial CO2 and local air pollutant (LAP) emissions from 2000 to 2019. Further, a random forest model was used to identify the key influencing factors of pollution abatement, carbon reduction, and the nonlinear response relation among them. Strategies for promoting pollution abatement and carbon reduction were proposed according to local conditions. The results showed that industrial CO2 emissions were on the rise, whereas the emission intensity of the Guanzhong Plain and Zhongyuan city clusters were on the decline. Furthermore, the strong potential for a reduction in carbon emissions and LAP emissions and intensity remained. The trends in industrial CO2 emissions and industrial LAP emissions were not simultaneous. Among the key influencing factors, industrial added value above designated size and energy consumption per 10000 yuan industrial added value were shared by both industrial CO2 emissions and LAP emissions. The proportion of high-tech industries in industrial value added, the proportion of R&D expenditures in the GDP, and the industrial sulfur dioxide removal rate were the key influencing factors for LAP emissions, and differences existed across city clusters. Some indicators showed that a significant nonlinear response relation, the industrial scale effect, the distortion of R&D personnel and funds, and the lag of green technology utility were important factors in terms of nonlinear characteristics. To realize the synergistic promotion of pollution reduction and carbon reduction, carbon reduction could be prioritized, and the upgrading of industrial structure, along with the dual control of both energy consumption and intensity should be promoted. Finally, an improvement in energy efficiency is needed.
|
Received: 16 August 2022
|
|
|
|
|
[1] |
Song C Z, Yi G W, Lu Z L, et al. Industrial ecological efficiency of cities in the Yellow River Basin in the background of China's economic transformation:spatial-temporal characteristics and influencing factors[J]. Environmental Science and Pollution Research, 2022,29(3):4334-4349.
|
[2] |
申桂萍,宋爱峰.我国黄河流域工业高质量发展效率研究[J]. 兰州大学学报(社会科学版), 2020,48(6):33-41. Shen G P, Song A F. Efficiency of high-quality industrial development in Yellow River Basin[J]. Journal of Lanzhou University (Social Sciences), 2020,48(6):33-41.
|
[3] |
郑 航,叶阿忠.城市群碳排放空间关联网络结构及其影响因素[J]. 中国环境科学, 2022,42(5):2413-2422. Zheng H, Ye A Z. Spatial correlation network structure and influencing factors of carbon emission in urban agglomeration[J]. China Environmental Science, 2022,42(5):2413-2422.
|
[4] |
Guan Y R, Shan Y L, Huang Q, et al. Assessment to China's recent emission pattern shifts[J]. Earths Future, 2021,9(11):e2021EF002241.
|
[5] |
毛显强,邢有凯,高玉冰,等.温室气体与大气污染物协同控制效应评估与规划[J]. 中国环境科学, 2021,41(7):3390-3398. Mao X Q, Xing Y K, Gao Y B, et al. Study on GHGs and air pollutants co-control:assessment and planning[J]. China Environmental Science, 2021,41(7):3390-3398.
|
[6] |
金凤君,马 丽,许 堞,等.黄河流域产业绿色转型发展的科学问题与研究展望[J]. 中国科学基金, 2021,35(4):537-543. Jin F J, Ma L, Xu D, et al. Scientific issues and research prospects of industries green transformation of the Yellow River Basin[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(4):537-543.
|
[7] |
唐湘博,张 野,曹利珍,等.中国减污降碳协同效应的时空特征及其影响机制分析[J]. 环境科学研究, 2022,35(10):2252-2263. Tang X B, Zhang Y, C Cao L Z, et al. Spatio-temporal characteristics and influencing mechanism of synergistic effect of pollution and carbon emission reduction in China[J]. Research of Environmental Sciences, 2022,35(10):2252-2263.
|
[8] |
李 衡,韩 燕. 黄河流域PM2.5时空演变特征及其影响因素分析[J]. 世界地理研究, 2022,31(1):130-141. Li H, Han Y. Analysis on the spatial-temporal evolution characteristics of PM2.5 and its influencing factors in the Yellow River Basin[J]. World Regional Studies, 2022,31(1):130-141.
|
[9] |
邓明翔,李 巍.基于LEAP模型的云南省供给侧结构性改革对产业碳排放影响情景分析[J]. 中国环境科学, 2017,37(2):786-794. Deng M X, Li W. Scenario analysis of the supply-side structural reform influences on industrial carbon emissions based on LEAP model in Yunnan province[J]. China Environmental Science, 2017, 37(2):786-794.
|
[10] |
Dong F, Yu B L, Hadachin T, et al. Drivers of carbon emission intensity change in China[J]. Resources Conservation and Recycling, 2018,129:187-201.
|
[11] |
Yan Q Y, Wang Y X, Balezentis T, et al. Energy-related CO2 emission in China's provincial thermal electricity generation:Driving factors and possibilities for abatement[J]. Energies, 2018,11(5):1096.
|
[12] |
Zheng X Q, Lu Y L, Yuan J J, et al. Drivers of change in China's energy-related CO2 emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(1):29-36.
|
[13] |
Wang Z H, Li Y M, Cai H L, et al. Regional difference and drivers in China's carbon emissions embodied in internal trade[J]. Energy Economics, 2019,83:217-228.
|
[14] |
吴晓慧,徐丽笑,齐剑川,等.中国大气汞排放变化的社会经济影响因素[J]. 中国环境科学, 2021,41(4):1959-1969. Wu X H, Xu L X, Qi J C, et al. Socioeconomic factors influencing atmospheric mercury emission changes in China[J]. China Environmental Science, 2021,41(4):1959-1969.
|
[15] |
马伟波,赵立君,王 楠,等.长三角城市群减污降碳驱动因素研究[J]. 生态与农村环境学报, 2022,38(10):1273-1281. Ma W B, Zhao L J, Wang N, et al. Study on driving factors of pollution and carbon reduction in the Yangtze River Delta urban agglomerations[J]. Journal of Ecology and Rural Environment, 2022,38(10):1273-1281.
|
[16] |
Ang B W. LMDI decomposition approach:A guide for implementation[J]. Energy Policy, 2015,86:233-238.
|
[17] |
杨绍华,张宇泉,耿 涌.基于LMDI和泰尔指数的长江经济带交通碳排放变化分析[J]. 中国环境科学, 2022,42(10):4817-4826. Yang S H, Zhang Y Q, Geng Y. Examining the changes in carbon emissions of the transportation sector in the Yangtze River Economic Belt-A LMDI and Theil index-based approach[J]. China Environmental Science, 2022,42(10):4817-4826.
|
[18] |
任建兰,徐成龙,陈延斌,等.黄河三角洲高效生态经济区工业结构调整与碳减排对策研究[J]. 中国人口·资源与环境, 2015,25(4):35-42. Ren J L, Xu C L, Chen Y B, et al. Research on industrial structure adjustment and carbon emissions of the Yellow River Delta high-efficiency ecological economic region[J]. China Population, Resources and Environment, 2015,25(4):35-42.
|
[19] |
钟章奇,姜 磊,何凌云,等.基于消费责任制的碳排放核算及全球环境压力[J]. 地理学报, 2018,73(3):442-459. Zhong Z Q, Jiang L, He L Y, et al. Global carbon emissions and its environmental impact analysis based on a consumption accounting principle[J]. Acta Geographica Sinica, 2018,73(3):442-459.
|
[20] |
许 博,赵 月,鞠美庭,等.中国城市生活垃圾产生量的区域差异——基于STIRPAT模型[J]. 中国环境科学, 2019,39(11):4901-4909. Xu B, Zhao Y, Ju M T, et al. Regional differences of municipal solid waste generation in China based on the STIRPAT model[J]. China Environmental Science, 2019,39(11):4901-4909.
|
[21] |
韦彦汀,李思佳,张 华.成渝城市群碳排放时空特征及其影响因素[J]. 中国环境科学, 2022,42(10):4807-4816. Wei Y T, Li S J, Zhang H. Temporal-spatial evolution of carbon emission and driving factors in the Chengdu-Chongqing urban agglomeration[J]. China Environmental Science, 2022,42(10):4807-4816.
|
[22] |
刘茂辉,刘胜楠,李 婧,等.天津市减污降碳协同效应评估与预测[J]. 中国环境科学, 2022,42(8):3940-3949. Liu M H, Liu S N, Li J, et al. Evaluation and prediction of the synergistic effect of pollution reduction and carbon reduction in Tianjin[J]. China Environmental Science, 2022,42(8):3940-3949.
|
[23] |
耿佳辰,沈 石,程昌秀."十三五"时期黄河流域PM2.5时空分布规律及多尺度社会经济影响机制分析[J]. 地球信息科学学报, 2022, 24(6):1163-1175. Geng J C, Shen S, Cheng C X. Spatio-temporal evolution and the multi-scale socio-economic influencing mechanism of PM2.5 in the Yellow River Basin during the China's 13th Five-Year Plan[J]. Journal of Geo-information Science, 2022,24(6):1163-1175.
|
[24] |
顾斌杰,赵海霞,骆新燎,等.基于文献计量的减污降碳协同减排研究进展与展望[J]. 环境工程技术学报, 2023,13(1):85-95. Gu B J, Zhao H X, Luo X L, et al. Research progress and prospect of collaborative emissions reduction of pollution and carbon dioxide emissions based on bibliometrics[J]. Journal of Environmental Engineering Technology, 2023,13(1):85-95.
|
[25] |
牛 彤.中国工业大气污染物和二氧化碳协同减排研究[D]. 太原:太原理工大学, 2019. Niu T. Study on synergistic emission reduction of industrial air pollutants and carbon dioxide in China[D]. Taiyuan:Taiyuan University of Technology, 2019.
|
[26] |
Zhang P D. End-of-pipe or process-integrated:evidence from LMDI decomposition of China's SO2 emission density reduction[J]. Frontiers of Environmental Science & Engineering, 2013,7(6):867-874.
|
[27] |
黄 丽,王武林,龚 姣.中亚五国自华进口贸易技术溢出及碳排放影响研究[J]. 干旱区地理, 2022,45(3):986-997. Huang L, Wang L, Gong J. Technology spillover of import trade from China and the impact of carbon emissions in the five Central Asian countries[J]. Arid Land Geography, 2022,45(3):986-997.
|
[28] |
刘卫东,唐志鹏,夏 炎,等.中国碳强度关键影响因子的机器学习识别及其演进[J]. 地理学报, 2019,74(12):2592-2603. Liu W D, Tang Z P, Xia Y, et al. Identifying the key factors influencing Chinese carbon intensity using machine learning, the random forest algorithm, and evolutionary analysis[J]. Acta Geographica Sinica, 2019,74(12):2592-2603.
|
[29] |
Liu Z, Guan D B, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015,524(7565):335.
|
[30] |
刘 伟,毛显强,李 巍,等.黄河流域城市群工业增长与碳排放脱钩关系研究[J/OL]. 环境工程技术学报,[2023-03-27]. http://kns.cnki.net/kcms/detail/11.5972.X.20220926.0917.002.html. Liu W, Mao X Q, Li W, et al. Study on decoupling relationship between industrial growth and carbon dioxide emissions in the Yellow River Basin Urban Agglomeration[J/OL]. Journal of Environmental Engineering Technology,[2023-03-27]. http://kns.cnki.net/kcms/detail/11.5972.X.20220926.0917.002.html.
|
[31] |
张 政.财经新闻与股份波动的量化分析[D]. 昆明:云南财经大学, 2019. Zhang Z. Quantitative analysis of financial news and stock price fluctuations[D]. Kunming:Yunnan University of Finance and Economics, 2019.
|
[32] |
Lyu W, Li Y, Guan D, et al. Driving forces of Chinese primary air pollution emissions:an index decomposition analysis[J]. Journal of Cleaner Production, 2016,133:136-144.
|
[33] |
冯相昭,蔡博峰,王 敏,等.中国资源型城市CO2排放比较研究[J]. 中国人口·资源与环境, 2017,27(2):5-9. Feng X Z, Cai B F, Wang M, et al. A comparative study on CO2 emission of resource-based cities in China[J]. China population, resources and environment, 2017,27(2):5-9.
|
[34] |
边 宇,蔺雪芹,周 笑,等.京津冀工业碳排放时空演化特征及影响因素[J]. 环境科学与技术, 2021,44(11):37-47. Bian Y, Lin X Q, Zhou X, et al. Temporal and spatial evolution characteristics and influencing factors of industrial carbon emissions in Beijing-Tianjin-Hebei region[J]. Environmental Science & Technology, 2021,44(11):37-47.
|
[35] |
周智敏.中国FDI、产业结构与大气污染排放水平的关系研究[D]. 武汉:中南财经政法大学, 2018. Zhou Z M. Research on the Relation between FDI、Industrial Structure and Air Pollution Emission Level in China[D]. Wuhan:Zhongnan University of Economics and Law, 2018.
|
[36] |
余文梦,张婷婷,沈大军.基于随机森林模型的我国县域碳排放强度格局与影响因素演进分析[J]. 中国环境科学, 2022,42(6):2788-2798. Yu W M, Zhang T T, Shen D J. County-level spatial pattern and influencing factors evolution of carbon emission intensity in China:A random forest model analysis[J]. China Environmental Science, 2022, 42(6):2788-2798.
|
[37] |
严 翔,黄永春,胡世亮,等.R&D要素配置、碳排放及绿色技术转移纠偏作用[J/OL]. 科学学研究,[2023-03-27]. https://doi.org/10.16192/j.cnki.1003-2053.20220614.001. Yan X, Huang Y C, Hu S L, et al. Allocation of R&D factors, carbon emissions and the correction effect of green technology transfer[J/OL]. Studies in Science of Science,[2023-03-27].https://doi.org/10.16192/j.cnki.1003-2053.20220614.001.
|
[38] |
林毅夫.新结构经济学的理论基础和发展方向[J]. 经济评论, 2017,(3):4-16. Lin Y F. The theoretical basis and development direction of new structural economics[J]. Economic Review, 2017,(3):4-16.
|
|
|
|