|
|
Influence of carbonic anhydrase-producing bacteria on the interaction of sandstone-CO2-water |
WANG Bu-kang, QIAN Chun-xiang |
Research Center of Green Construction Materials &Carbon Utilization, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China |
|
|
Abstract In this study, carbonic anhydrase-producing bacteria were selected and introduced into short-term experiments involving sandstone-CO2-water interactions. The chemical properties of the solution, the dissolution-precipitation process of rock minerals, and the changes in bicarbonate ion concentration were analyzed and detected. The results showed that after 20days of reaction under conditions of 50℃ and 10MPa, the pH of the system increased, and the microbial group pH was slightly higher than that of the control group. The participation of bacteria significantly accelerated the dissolution and precipitation processes of rock minerals, reducing the core porosity from 15.02% to 13.27%. In a 1-liter solution with a solid-to-liquid ratio of 1:5, the effective CO2 sequestration amounts for the control group and the microbial group were 0.207g and 0.726g, respectively. The addition of microorganisms resulted in better carbon fixation, demonstrating that carbonic anhydrase-producing bacteria have a certain promoting effect on CO2 geological sequestration.
|
Received: 22 August 2024
|
|
Corresponding Authors:
钱春香,教授,cxqian@seu.deu.cn
E-mail: cxqian@seu.deu.cn
|
|
|
|
[1] Sanna A, Uibu M, Caramanna G, et al. A review of mineral carbonation technologies to sequester CO2[J]. Chemical Society reviews, 2014,43(23):849-888. [2] De Silva G P D, Ranjith P G, Perera M S A. Geochemical aspects of CO2 sequestration in deep saline aquifers:A review[J]. Fuel, 2015, 155:128-143. [3] Salek S S, Kleerebezem R, Jonkers H M, et al. Mineral CO2 sequestration by environmental biotechnological processes[J]. Trends in Biotechnology, 2013,31(3):139-146. [4] 任杨千千,连懿,李海笑,等.中国大陆CO2浓度时空分布特征及驱动因素[J].中国环境科学, 2023,43(4):1919-1929. Renyang Q Q, Lian Y, Li H X, et al. Spatial and temporal distribution of CO2 concentration in mainland China and its influencing factors[J]. China Environmental Science, 2023,43(4):1919-1929. [5] 陆佳滢,王玉明,李咸伟,等.钢铁废气中二氧化碳的微生物固定与转化机制研究进展[J].中国环境科学, 2024,44(9):5248-5262. Lu J Y, Wang Y M, Li X W, et al. Advances in microbial fixation and conversion mechanisms of carbon dioxide derived from steel off-gas[J]. China Environmental Science, 2024,44(9):5248-5262. [6] 陈兵,肖红亮,李景明,等.二氧化碳捕集、利用与封存研究进展[J].应用化工, 2018,47(3):589-592. Chen B, Xiao H L, Li J M, et al. Research progress on carbon dioxide capture, utilization and storage[J]. Applied chemical engineering, 2018,47(3):589-592. [7] Pearce J, Dawson G. Experimental determination of impure CO2 alteration of calcite cemented cap-rock, and long term predictions of cap-rock reactivity[J]. Geosciences (Basel), 2018,8(7):241. [8] 张贤,李阳,马乔,等.我国碳捕集利用与封存技术发展研究[J].中国工程科学, 2021,23(6):70-80. Zhang X, Li Y, Ma Q, et al. Development of carbon capture, utilization and storage technology in China[J]. China Engineering Science 2021,23(6):70-80. [9] Bergman P D, Winter E M, Chen Z Y. Disposal of power plant CO2 in depleted oil and gas reservoirs in Texas[J]. Energy Conversion and Management, 1997,38:S211-S216. [10] Maddali V, Tularam G A, Glynn P. Economic and time-sensitive issues surrounding CCS:A policy analysis[J]. Environmental Science& Technology, 2015,49(15):8959-8968. [11] 丁国生,唐立根,丁一宸,等.中国水层CO2地质封存技术攻关方向[J].天然气工业, 2024,44(4):39-45. Ding G S, Tang L G, Ding Y C, et al. Research direction of CO2 geological storage technology in aquifers in China[J]. Natural Gas Industry, 2024,44(4):39-45. [12] Mitchell A C, Phillips A J, Hiebert R, et al. Biofilm enhanced geologic sequestration of supercritical CO2[J]. international journal of greenhouse gas control, 2009,3(1):90-99. [13] Ning Liu, Cheng J. Geochemical effects of cement mineral variations on water-rock-CO2 interactions in a sandstone reservoir as an experiment and modeling study[J]. Greenhouse Gases:Science and Technology, 2019,9(4):789-810. [14] Koukouzas N, Kypritidou Z, Purser G, et al. Assessment of the impact of CO2 storage in sandstone formations by experimental studies and geochemical modeling:The case of the Mesohellenic Trough, NW Greece[J]. International journal of greenhouse gas control, 2018,71:116-132. [15] Michael K, Golab A, Shulakova V, et al. Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations[J]. International journal of greenhouse gas control, 2010, 4(4):659-667. [16] Park T, Yoon S, Jung J, et al. Effect of fluid-rock interactions on in situ bacterial alteration of interfacial properties and wettability of CO2-brine-mineral systems for geologic carbon storage[J]. Environmental Science& Technology, 2020,54(23):15355-15365. [17] Li S, Feng Q, Liu J, et al. Carbonate minerals and dissimilatory iron-reducing organisms trigger synergistic abiotic and biotic chain reactions under elevated CO2 concentration[J]. Environmental Science& Technology, 2022,56(22):16428-16440. [18] Zhang W, Li Y, Xu T, et al. Long-term variations of CO2 trapped in different mechanisms in deep saline formations a case study of the Songliao Basin, China[J]. International journal of greenhouse gas control, 2009,3(2):161-180. [19] Trémosa J, Castillo C, Vong C Q, et al. Long-term assessment of geochemical reactivity of CO2 storage in highly saline aquifers:Application to Ketzin, In Salah and Snøhvit storage sites[J]. International journal of greenhouse gas control, 2014,20:2-26. [20] Xu T, Apps J A, Pruess K, et al. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation[J]. Chemical Geology, 2007,242(3/4):319-346. [21] Tang Y, Hu S, He Y, et al. Experiment on CO2-brine-rock interaction during CO2 injection and storage in gas reservoirs with aquifer[J]. Chemical Engineering Journal, 2021,413:127567. [22] Santillan E U, Kirk M F, Altman S J, et al. Mineral influence on microbial survival during carbon sequestration[J]. Geomicrobiology Journal, 2013,30(7):578-592. [23] Ma J, Wang S, Xue L, et al. Research of the impact of elevated CO2 on soil microbial diversity[J]. Energy procedia, 2017,114:3070-3076. [24] Supuran C T. Structure and function of carbonic anhydrases[J]. Biochemical Journal, 2016,473(14):2023-2032. [25] Shen T, Li W, Pan W, et al. Role of bacterial carbonic anhydrase during CO2 capture in the CO2-H2O-carbonate system[J]. Biochemical Engineering Journal, 2017,123:66-74. [26] Li C, Zhang F, Lyu C, et al. Effects of H2S injection on the CO2-brine-sandstone interaction under 21MPa and 70℃[J]. Marine Pollution Bulletin, 2016,106(1/2):17-24. [27] 李晨阳.土著微生物介导的CO2咸水层封存过程的生物地球化学行为研究[D].长春:吉林大学, 2017. Li C Y. Study on the biogeochemical behavior of CO2 sequestration in saline aquifers mediated by indigenous microorganisms[D]. Changchun:Jilin University, 2017. [28] Xiao L, Lian B. Heterologously expressed carbonic anhydrase from Bacillus mucilaginosus promoting CaCO3 formation by capturing atmospheric CO2[J]. Carbonates and evaporites, 2016,31(1):39-45. [29] Mo B, Lian B. Interactions between Bacillus mucilaginosus and silicate minerals (weathered adamellite and feldspar):Weathering rate,products,and reaction mechanisms[J]. Chinese Journal of Geochemistry, 2011,30(2):187-192. [30] 董翠玲,连宾.细菌与真菌对黑云母的风化作用比较:以胶质芽孢杆菌和黑曲霉为例[J].矿物岩石地球化学通报, 2014,33(6):772-777. Dong C L, Lian B. Comparison of the weathering effects of bacteria and fungi on biotite:taking Bacillus subtilis and Aspergillus niger as examples[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014,33(6):772-777. [31] 王建萍.三株细菌胞外聚合物(EPS)对矿物细颗粒表面性质的影响及改性作用[D].绵阳:西南科技大学, 2015. Wang J P. The effect and modification of extracellular polymeric substances (EPS) from three bacterial strains on the surface properties of mineral fine particles[D]. Mianyang:Southwest University of Science and Technology, 2015. [32] 赵静.微生物介导的CO2-水-砂岩相互作用实验研究[D].长春:吉林大学, 2014. Zhao J. Experimental study on microbial mediated CO2 water sandstone interaction[D]. Changchun:Jilin University, 2014. [33] Huntzinger D N, Gierke J S, Kawatra S K, et al. Carbon dioxide sequestration in cement kiln dust through mineral carbonation[J]. Environmental Science& Technology, 2009,43(6):1986-1992. |
|
|
|