|
|
Applicability of Bayesian inference approach for pollution source identification of river chemical spills:A tracer experiment based analysis of algorithmic parameters, impacts and comparison with Frequentist approaches |
JIANG Ji-ping1,2, DONG Fu-jia1, LIU Ren-tao1, YUAN Yi-xing1 |
1. School of Environment, Harbin Institute of Technology, Harbin 150090, China;
2. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
|
|
Abstract Based on Bayes theorem and combined variance assumptions on pollutant concentration time series with Adaptive-Metropolis sampling, a modular Bayesian approach was established targeting at pollutant source identification during spills. This probability approach updated the prior knowledge on source information by combining experiments and monitoring and was able to directly characterize uncertainty due to the inversion process by probability distribution. Source inversion test results from field tracer experiments were investigated to determine the validity of this Bayesian inference approach, correlation of posterior parameter and impact factors. Results indicate that Bayesian approach was successful in identifying the source parameters and could effectively reduce the emergency decision risks. It is shown that the skewness of posterior distribution of source parameters and variation were sensitive to assumed variance. Using RMSE as objective function, test results also suggested that the default parameters for the established Bayesian source inversion method, were as follows:heteroscedasticity setting stabilization factors λ1=0, and λ2=0.1-0.5, and AM sampling proposal scale factor sd=0.1-0.3. Comparisons between the Bayesian approach and optimization approach on aspects of solution methodology, computing process and inverse results were made and differentiation were highlighted. This work provides valuable references for the practical usage of Bayesian approach in surface water pollution source identification.
|
Received: 07 March 2017
|
|
|
|
|
Cite this article: |
JIANG Ji-ping,DONG Fu-jia,LIU Ren-tao等. Applicability of Bayesian inference approach for pollution source identification of river chemical spills:A tracer experiment based analysis of algorithmic parameters, impacts and comparison with Frequentist approaches[J]. CHINA ENVIRONMENTAL SCIENCECE, 2017, 37(10): 3813-3825.
|
|
|
|
URL: |
http://www.zghjkx.com.cn/EN/ OR http://www.zghjkx.com.cn/EN/Y2017/V37/I10/3813 |
[1] |
Xue P, Zeng W. Trends of environmental accidents and impact factors in China[J]. Frontiers of Environmental Science & Engineering in China, 2011,5(2):266-276.
|
[2] |
曲建华,孟宪林,尤宏.两阶段评估体系筛选水源突发污染应急最优技术方案[J]. 中国环境科学, 2015,35(10):3193-200.
|
[3] |
Staff Reporter. Crocodile River water affected by toxic spill[M/OL]. 2005[2017-03-05].http://mg.co.za/article/2005-12-23-crocodile-river-water-affected-by-toxic-spill.
|
[4] |
India Environment Portal[M/OL]. 2017[2017-03-05] http://www.indiaenvironmentportal.org.in/category/thesaurus/water-pollution.
|
[5] |
NRC. National Response Center (NRC) data download[M/OL].[2017-03-05] http://www.nrc.uscg.mil/download.html.
|
[6] |
王圣瑞,张蕊,过龙根,等.洞庭湖水生态风险防控技术体系研究[J]. 中国环境科学, 2017,37(5):1896-905.
|
[7] |
陈媛华,王鹏,姜继平.基于相关系数优化法的河流突发污染源项识别[J]. 中国环境科学, 2011,31(11):1802-1807.
|
[8] |
彭亚绵,刘春凤,杨爱民.二维对流一扩散方程反问题的遗传算法求解[J]. 河北理工大学学报(自然科学版), 2008,30(2):84-87.
|
[9] |
辛小康,韩小波,李建.基于遗传算法的水污染事故污染源识别模型[J]. 水电能源科学, 2014,32(7):52-55.
|
[10] |
牟行洋.基于微分进化算法的污染物源项识别反问题研究[J]. 水动力学研究与进展A辑, 2011,26(1):24-30.
|
[11] |
Boano F, Revelli R, Ridolfi L. Source identification in river pollution problems:A geostatistical approach[J]. Water Resources Research, 2005,41(7):1-13
|
[12] |
Cheng W P, Jia Y. Identification of contaminant point source in surface waters based on backward location probability density function method[J]. Advances in Water Resources, 2010,33(4):397-410.
|
[13] |
王家彪,雷晓辉,廖卫红.基于耦合概率密度方法的河渠突发水污染溯源[J]. 水利学报, 2015,46(11):1280-1289.
|
[14] |
吴自库,范海梅,陈秀荣.对流-扩散过程逆过程反问题的伴随同化研究[J]. 水动力学研究与进展, 2008,23(2):111-115.
|
[15] |
Hamdi A. Inverse source problem in a 2D linear evolution transport equation:detection of pollution source[J]. Inverse Problems in Science and Engineering, 2012,20(3):401-421.
|
[16] |
Hamdi A. Identification of point sources in two-dimensional advection-diffusion-reaction equation:application to pollution sources in a river. Stationary case[J]. Inverse Problems in Science & Engineering, 2007,15(8):855-870.
|
[17] |
Hamdi A. The recovery of a time-dependent point source in a linear transport equation:application to surface water pollution[J]. Inverse Problems, 2009,25(7):6-23.
|
[18] |
吴一亚,金文龙,吴云波.宽浅河道瞬时源源项反问题及反演精度主要影响因子分析[J]. 水资源保护, 2015,31(5):58-61.
|
[19] |
高琦,韩龙喜,陈丽娜.平面二维河道瞬时源反演及反演精度影响分析[J]. 四川环境, 2016,35(3):67-72.
|
[20] |
Marshall L, Nott D, Sharma A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling[J]. Water Resources Research, 2004,40(2):1-11.
|
[21] |
Campbell E P, Fox D R, Bates B C. A Bayesian Approach to parameter estimation and pooling in nonlinear flood event models[J]. Water Resources Research, 1999,35(1):211-220.
|
[22] |
Bates B C, Campbell E P. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfallrunoff modeling[J]. Water Resources Research, 2001,37(4):937-947.
|
[23] |
Loos M, Krauss M, Fenner K. Pesticide Nonextractable Residue Formation in Soil:Insights from Inverse Modeling of Degradation Time Series[J]. Environmental Science & Technology, 2012,46(18):9830-9837.
|
[24] |
朱嵩.基于贝叶斯推理的环境水力学反问题研究[D]. 浙江大学, 2008.
|
[25] |
朱嵩,刘国华,毛根海.利用贝叶斯推理估计二维含源对流扩散方程参数[J]. 四川大学学报(工程科学版), 2008,40(2):38-43.
|
[26] |
朱嵩,刘国华,王立忠.水动力-水质耦合模型污染源识别的贝叶斯方法[J]. 四川大学学报(工程科学版), 2009,41(5):30-35.
|
[27] |
毛星.基于贝叶斯理论的事故场景重建技术[D]. 天津:南开大学, 2009.
|
[28] |
陈海洋,滕彦国,王金生.基于Bayesian-MCMC方法的水体污染识别反问题[J]. 湖南大学学报(自然科学版), 2012,39(6):74-78.
|
[29] |
曹小群,宋君强,张卫民.对流-扩散方程源项识别反问题的MCMC方法[J]. 水动力学研究与进展A辑, 2010,25(2):127-136.
|
[30] |
Wei G, Chi Z, Yu L, et al. Source identification of sudden contamination based on the parameter uncertainty analysis[J]. Journal of Hydroinformatics, 2016,18(6):919-927.
|
[31] |
Thomann R V, Mueller J A. Principal of surface water quality modelling and control[M]. Prentice Hall, 1987.
|
[32] |
谢更新.水环境中的不确定性理论与方法研究-以三峡水库为例[D]. 长沙:湖南大学, 2005.
|
[33] |
Runkel R L. One-dimensional transport with inflow and storage (OTIS):a solute transport model for streams and rivers[M/OL]. Water-Resource Investigations Report, 1998.
|
[34] |
Scales J A, Tenorio L. Prior information and uncertainty in inverse problems[J]. Geophysics, 2001,66(2):389-397.
|
[35] |
Ntzoufras I. Bayesian modeling using WinBUGS[M]. Hoboken, New Jersey:John Wiley&Sons, 2009.
|
[36] |
Keats A, Yee E, Lien F-S. Bayesian inference for source determination with applications to complex urban environment[J]. Atmospheric Environment, 2007,41(3):465-479.
|
[37] |
Keats A, Yee E, Lien F S. Information-driven receptor placement for contaminant source determination[J]. Environmental Modelling & Software, 2010,25(9):1000-1013.
|
[38] |
Box G E P, Cox D R. An Analysis of Transformations[J]. Journal of the Royal Statistical Society, 1964,26(2):211-252.
|
[39] |
Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953,21(10):87-92.
|
[40] |
Hasting W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970,57(1):97-109.
|
[41] |
Geman S, Geman D. Stochastic relaxtion, Gibbs distirubtions and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6:721-741.
|
[42] |
Liu J S. Monte Carlo Strategies in Scientific Computing[M]. New York:Springer-Verlag, 2001.
|
[43] |
Haario H, Saksman E, Tamminen J. An adaptive Metropolis algorithm[J]. Bernoulli, 2001,7(2):223-242.
|
[44] |
Haario H, Saksman E, Tamminen J. Componentwise adaptation for high dimensional MCMC[J]. Computational Statistics, 2005,20(2):265-273.
|
[45] |
Cowles M K, Carlin B P. Markov chain Monte Carlo convergence diagnostics:a comparative review[J]. Journal of the American Statistical Association, 1996,91(434):883-904.
|
[46] |
Rathbun R E, Shultz D J, Stephens D W. Preliminary experiments with a modified tracer technique for measuring stream reaeration coefficients[M/OL]. USGS Open-File Report, 1975. http://pubs.er.usgs.gov/publication/ofr75256.
|
[47] |
Crompton J. Traveltime Data for the Truckee River Between Tahoe City, California, and Vista, Nevada, 2006 and 2007. USGS OFR 2008-1084[M]. 2008.
|
[48] |
Rivord J, Saito L, Miller G, et al. Modeling Contaminant Spills in a Regulated River in the Western United States[J]. Journal of Water Resources Planning and Management, 2014,140(3):343-354.
|
[49] |
Reid S E, Mackinnon P A, Elliot T. Direct measurements of reaeration rates using noble gas tracers in the River Lagan, Northern Ireland[J]. Water and Environment Journal, 2007, 21(3):182-191.
|
[50] |
Efron B. Why Isn't Everyone a Bayesian?[J]. The American Statistician, 1986,40(1):1-5.
|
[51] |
Lindley D V. The Future of Statistics:A Bayesian 21st Century[J]. Advances in Applied Probability, 1975:7.
|
[52] |
Efron B. Bayesian inference and the parametric bootstrap[J]. The Annals of Applied Statistics, 2012,6(4):1971-1997.
|
|
|
|