|
|
Abundance dynamics of β-lactamase genes in penicillin biomass-residue composting |
DUAN Hui-ying1, ZHAO Juan1, ZHANG Zhen-hua2, YU Ran1, ZHANG Di-ni2, LIU Yan2, WANG Chang-yong2 |
1. Department of Energy and Environment Southeast University, Nanjing 210096, China;
2. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China |
|
|
Abstract In order to reveal the environmental impacts of antibiotic resistance genes (ARGs) during penicillin biomass-residue composting because of the possible antibiotic residues, the relative abundances and distributions of eight typical β-lactamase genes (bla-TEM、bla-CTX-M-1、bla-CTX-M-9、bla-IMP-1、bla-VIM-2、bla-CMY、bla-OXA-23、bla-NDM-1) were investigated with quantitative PCR technique. The results indicated that high temperature composting greatly shortened the degradation time of penicillin. No bla-NDM-1 gene was detected in any sample. The abundances of all studied genes were significantly reduced from day 1 to day 30 in the different penicillin biomass-residue composting experiments except those of the bla-IMP-1 and bla-VIM-2 genes which slight increased. The penicillin residue induced the increases of relative abundance of bla-TEM, bla-CTX-M-1. bla-CTX-M-9, bla-CMY, bla-OXA-23, and bla-VIM-2 genes during the early composting stage. With the elongation of the composting process, penicillin residue gradually degraded. At the end of composting, the relative abundances of bla-TEM、bla-CTX-M-1、bla-CTX-M-9、bla-CMY significantly decreased in all treated samples and the control in comparison with those of bla-IMP-1、bla-VIM-2, which greatly increased.
|
Received: 10 March 2017
|
|
|
|
|
[1] |
Baquero F, Martínez J L, Cantón R. Antibiotics and antibiotic resistance in water environments[J]. Current Opinion in Biotechnology, 2008,19(3):260-265.
|
[2] |
Levy S B, Marshall B. Antibacterial resistance worldwide:causes, challenges and responses[J]. Nature Medicine, 2004,10(12):122-129.
|
[3] |
Colomerlluch M, Imamovic L, Jofre J, et al. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry[J]. Antimicrobial Agents & Chemotherapy, 2011,55(10):4908-4911.
|
[4] |
Hsu J T, Chen C Y, Young C W, et al.Prevalence of sulfonamideresistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan[J]. J. Hazard Mater., 2014,277(4):34-43.
|
[5] |
Li D, Yu T, Zhang Y, et al.Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river[J]. Applied & Environmental Microbiology, 2010,76(11):3444-3451.
|
[6] |
Udikovickolic N, Wichmann F, Broderick N A, et al. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(42):1-6.
|
[7] |
D'Costa V M, King C E, Kalan L, et al. Antibiotic resistance is ancient[J]. Nature, 2011,477(7365):457-461.
|
[8] |
Lang K S, Anderson J M, Schwarz S, et al.Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics[J]. Applied & Environmental Microbiology Aem., 2010,76(15):5321-5326.
|
[9] |
Zhang Z, Zhao J, Yu C, et al.Evaluation of aerobic co-composting of penicillin fermentation fungi residue with pig manure on penicillin degradation, microbial population dynamics and composting maturity[J]. Bioresource Technology, 2015,198(8):403-409.
|
[10] |
田哲,张昱,杨敏.堆肥化处理对畜禽粪便中四环素类抗生素及抗性基因控制的研究进展[J]. 微生物学通报, 2015, 42(5):936-943.
|
[11] |
Wang L, Gutek A, Grewal S, et al. Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage[J]. Letters in Applied Microbiology, 2015,61(3):245-251.
|
[12] |
赵娟,张振华,段会英,等.青霉素菌渣堆肥过程中青霉素钠降解菌的分离与鉴定[J]. 环境科学研究, 2016,29(2):271-278.
|
[13] |
Ma S, Liu Y, Yu R, et al. Determination of sodium penicillin in soil through accelerated solvent extraction and solid phase extration followed by high performance liquid chromatography[J]. Environmental Chemistry, 2014(11):1978-1985.
|
[14] |
Colomerlluch M, Jofre J, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of environmental samples[J]. PLoS One, 2011,6(3):17549.
|
[15] |
Wendel A F, Brodner A H B, Wydra S, et al. Genetic characterization and emergence of the metallo-β-lactamase GIM-1 in Pseudomonas spp. and Enterobacteriaceae during a Long-Term outbreak[J]. Antimicrobial Agents & Chemotherapy, 2013,57(10):5162-5165.
|
[16] |
Krüttgen A, Razavi S, Imöhl M, et al.Real-time PCR assay and a synthetic positive control for the rapid and sensitive detection of the emerging resistance gene New Delhi Metallo-β-lactamase-1(bla(NDM-1))[J]. Medical Microbiology & Immunology, 2011,200(2):137-141.
|
[17] |
Geyer C N, Reisbig M D, Hanson N D. Development of a TaqMan multiplex PCR assay for detection of plasmid-mediated amp C β-lactamase genes[J]. J. Clin. Microbiol., 2012,50(11):3722-3725.
|
[18] |
Huang X Z, Cash D M, Chahine M A, et al. Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii[J]. Journal of Medical Microbiology, 2012,61(11):1532-1537.
|
[19] |
任佳,姚宏,刘苗苗,等.厌氧和好氧处理过程中四环素抗药基因的丰度[J]. 中国环境科学, 2016,36(1):268-275.
|
[20] |
Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae[J]. Nature, 1965, 208(208):239-241.
|
[21] |
底丽娜,南海辰,夏利宁.TEM型β-内酰胺酶[J]. 动物医学进展, 2014,35(7):107-110.
|
[22] |
Paterson D L, Bonomo R A. Extended-spectrum beta-lactamases:a clinical update[J]. Clinical Microbiology Reviews, 2005, 18(4):657-686.
|
[23] |
Zhou S, Nikolausz M, Zhang J, et al. Variation of the microbial community in thermophilic anaerobic digestion of pig manure mixed with different ratios of rice straw[J]. Journal of Bioscience & Bioengineering, 2016,122(3):334-340.
|
[24] |
Song C, Li M, Jia X, et al. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes:anaerobic digestion residue, pig manure and chicken manure[J]. Microb. Biotechnol., 2014, 7(5):424-433.
|
[25] |
Sarria J C. Infections caused by kluyvera species in humans[J]. Clinical Infectious Diseases, 2001,33(7):69-74.
|
[26] |
Zhao W H, Hu Z Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria[J]. Critical Reviews in Microbiology, 2013,39(1):71-72.
|
[27] |
D'Andrea M M, Arena F, Pallecchi L, et al. CTX-M-type β-lactamases:a successful story of antibiotic resistance[J]. International Journal of Medical Microbiology Ijmm, 2013, 303(6/7):305-317.
|
[28] |
Osano E, Arakawa Y, Wacharotayankun R, et al. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance[J]. Antimicrobial Agents & Chemotherapy, 1994,38(1):71-78.
|
[29] |
Widmann M, Pleiss J.Protein variants form a system of networks:Microdiversity of IMP metallo-beta-lactamases[J]. PLoS One, 2014,9(7):101813.
|
[30] |
Zhao Z, Wang J, Han Y, et al.Nutrients, heavy metals and microbial communities co-driven distribution of antibiotic resistance genes in adjacent environment of mariculture[J]. Environmental Pollution, 2016,220:909-918.
|
[31] |
Su J Q, Wei B, Ouyang W Y, et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting[J]. Environmental Science & Technology, 2015,49(12):7356-7363.
|
[32] |
Lauretti L, Riccio M L, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-betalactamase gene from a Pseudomonas aeruginosa clinical isolate[J]. Antimicrobial Agents & Chemotherapy, 1999,43(7):1584-1590.
|
[33] |
Fischer J, San J M, Roschanski N, et al. Spread and persistence of VIM-1 Carbapenemase-producing Enterobacteriaceae in three German swine farms in 2011 and 2012[J]. Veterinary Microbiology, 2016,200:118-123.
|
[34] |
Falgenhauer L, Ghosh H, Guerra B, et al. Comparative genome analysis of IncHI2VIM-1carbapenemase-encoding plasmids of Escherichia coli and Salmonella enterica isolated from a livestock farm in Germany[J]. Veterinary Microbiology, 2015,45(5):609-624.
|
[35] |
Jacoby G A. AmpC beta-lactamases[J]. Clinical Microbiology Reviews, 2009,22(1):161-182.
|
[36] |
Endimiani A, Hilty M, Perreten V. CMY-2-producing Escherichia coli in the nose of pigs[J]. Antimicrobial Agents & Chemotherapy, 2012,56(8):4556-4557.
|
[37] |
Mataseje L F, Baudry PJZhanel G G, Morck D W, et al. Comparison of CMY-2plasmids isolated from human, animal, and environmental Escherichia coli and Salmonella spp. from Canada[J]. Diagnostic Microbiology & Infectious Disease, 2010,67(4):387-391.
|
[38] |
Avison M B, Bennett P M, Walsh T R. Beta-lactamase expression in Plesiomonas shigelloides[J]. Journal of Antimicrobial Chemotherapy, 2000,45(6):877-880.
|
[39] |
Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii:Mechanisms and epidemiology[J]. Clinical Microbiology and Infection, 2006,12(9):826-836.
|
|
|
|