|
|
Denitrification characteristics of Bacillus subtilis sludge and analysis of microbial community structure |
WANG Si-yu1,2, LI Jun1,2, WANG Xiu-jie1,2, WANG Wei-qi1,2, CHAI Jian-zhong3 |
1. Urban Sewage Depth Processing and Utilization Technology Tational Engieering Laboratory, Beijing University of Technology, Beijing 100124, China; 2. Department of Municipal Engineering, College of Archetecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China; 3. Qinghai Jieshen Environmental Energy Industry Limited Company, Xining 810000, China |
|
|
Abstract Compared with the conventional activated sludge, the experiment was carried out to study the denitrification performance of activated sludge of Bacillus subtilis (hereinafter called Bacillus activated sludge) and the effect of Bacillus on microbial community structure. The results showed that within a certain range, the denitrification rate of two sludge was positively correlated with carbon-nitrogen ratio, the maximum denitrification rate of the experimental group could reach 27.144mg TN/(gMLSS·h) with the carbon-nitrogen ratio of 10, about 2.7 times of the control group. The bacterial community structure of the two groups was compared by Miseq high-throughput sequencing, and the results showed that the diversity of bacterial community in the experimental group of bacterial phylum, class, order, family and genus was better than that of the control group. The sludge in the experimental group mainly included Gemmobacter, Brachymonas, Thermomonas, Defluviimonas, Longilinea, Ornatilinea, Aridibacter, Exiguobacterium and so on. These bacteria cooperated to make the activated sludge with high efficient denitrification characteristics with sufficient carbon source.
|
Received: 12 May 2017
|
|
|
|
|
[1] |
Boopathy R, Kern C, Corbin A. Use of Bacillus consortium in waste digestion and pathogen control in shrimp aquaculture[J]. International Biodeterioration & Biodegradation, 2015,102(SI):159-164.
|
[2] |
Shimaya C, Hashimoto T. Isolation and characterization of novel thermophilic nitrifying Bacillus sp from compost[J]. Soil Science and Plant Nutrition, 2011,57(1):150-156.
|
[3] |
贾子龙,王国英,崔杰,等.异养硝化-好氧反硝化菌脱氮同时降解苯酚特性[J]. 中国环境科学, 2015,35(9):2644-2649.
|
[4] |
成钰,李秋芬,费聿涛,等.海水异养硝化_好氧反硝化芽孢杆菌SLWX_2的筛选及脱氮特性[J]. 环境科学, 2016,37(7):2681-2688.
|
[5] |
郑喜春,郭晓军,姚娜,等.反硝化芽孢杆菌的筛选鉴定及反硝化特性[J]. 生态学杂志, 2012,31(6):1447-1452.
|
[6] |
吴丽红,李晓惠,杨芳,等.蜡状芽孢杆菌生物强化反硝化脱氮研究[J]. 中国给水排水, 2016,(3):89-92.
|
[7] |
马宏瑞,章欣,王晓蓉,等.芽孢杆菌Z5溶铜绿微囊藻特性研究[J]. 中国环境科学, 2011,31(5):828-833.
|
[8] |
张小平.枯草芽孢杆菌sc02和施氏假单胞f1m对草鱼养殖水体水质的影响及机理研究[D]. 杭州:浙江大学, 2014.
|
[9] |
雍佳君,成小英.蠡河底泥中反硝化复合菌群富集及菌群结构研究[J]. 环境科学, 2015,2015(6):2232-2238.
|
[10] |
国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法,[M]. 4版.中国环境科学出版社, 2002.
|
[11] |
李鹏章,王淑莹,彭永臻,等. COD/N与pH值对短程硝化反硝化过程中N2O产生的影响[J]. 中国环境科学, 2014,34(8):2003-2009.
|
[12] |
Shijian G, Yongzhen P, Shuying W. Nitrite accumulation under constant temperature in anoxic denitrification process:The effects of carbon sources and COD/NO3--N[J]. Bioresource Technology, 2012,114(3):137-143.
|
[13] |
袁怡,黄勇,邓慧萍,等. C/N对反硝化过程中亚硝酸盐积累的影响分析[J]. 环境科学, 2013,34(4):1416-1420.
|
[14] |
侯红娟,王洪洋,周琪.进水COD浓度及C/N值对脱氮效果的影响[J]. 中国给水排水, 2005,21(12):19-23.
|
[15] |
马娟,宋相蕊,李璐.碳源对反硝化过程NO2-积累及出水pH值的影响[J]. 中国环境科学, 2014,34(10):2556-2561.
|
[16] |
罗菁蕾,张朝升,荣宏伟.碳氮比对生物膜SND过程微生物菌群结构的影响[J]. 给水排水, 2016,(7):96-100.
|
[17] |
王凯,武道吉,陈举欣,等. SBR处理渗滤液深度脱氮的影响因素研究[J]. 中国环境科学, 2016,36(11):3287-3294.
|
[18] |
陈文倩,周小红,张永明,等.两步脱氮过程的滤池反硝化动力学模型研究[J]. 给水排水, 2013,(s1):163-166.
|
[19] |
马娟,彭永臻,王丽.温度对反硝化过程的影响以及pH值变化规律[J]. 中国环境科学, 2008,28(11):1004-1008.
|
[20] |
牛萌,王淑莹,杜睿,等.甲醇为碳源短程反硝化亚硝酸盐积累特性[J]. 中国环境科学, 2017,37(9):3301-3308.
|
[21] |
Rittmann B E. Environmental biotechnology:principles and applications[M]. Beijing:Tsinghua University, 2002:59-135.
|
[22] |
郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M]. 北京:科学出版社, 2004.
|
[23] |
曾金平,陈光辉,李军,等.不同初始pH值下反硝化包埋颗粒的动力学特性[J]. 中国环境科学, 2017,37(2):526-533.
|
[24] |
Song Z, An J, Fu G, et al. Isolation and characterization of an aerobic denitrifying Bacillus sp YX-6from shrimp culture ponds[J]. Aquaculture, 2011,319(1/2):188-193.
|
[25] |
马勇,彭永臻.A/O生物脱氮工艺的反硝化动力学试验[J]. 中国环境科学, 2006,26(4):464-468.
|
[26] |
李鹏,毕学军,王军,等.常规和倒置A2/O工艺活性污泥微生物群落结构的比较[J]. 中国环境科学, 2017,37(3):1137-1145.
|
[27] |
Hirsch P, Schlesner H. Gemmobacter[M]. Bergey's Manual of Systematics of Archaea and Bacteria:John Wiley & Sons, Ltd, 2015.
|
[28] |
李敬源,林炜铁,罗剑飞,等.典型对虾养殖水体中参与硝化与反硝化过程的微生物群落结构[J]. 微生物学报, 2012,52(4):478-488.
|
[29] |
Mergaert J, Cnockaert M C, Swings J. Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov. two mesophilic species isolated from a denitrification reactor with poly(epsiloncaprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas[J]. International Journal of Systematic & Evolutionary Microbiology, 2003,53(6):1961.
|
[30] |
Foesel B U, Drake H L, Schramm A. Defluviimonas denitrificans gen. nov. sp. nov. and Pararhodobacter aggregans gen. nov. sp. nov. non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture[J]. Systematic & Applied Microbiology, 2011,34(7):498-502.
|
[31] |
李慧星,杜风光,薛刚.高通量测序研究酒精废水治理中厌氧活性污泥的微生物菌群[J]. 环境科学学报, 2016,36(11):4112-4119.
|
|
|
|