|
|
Adsorption characteristics and Mechanism of Cd2+on biochar with different pyrolysis temperatures produced from eucalyptus leaves |
GAO Li-yang1, DENG Jin-huan1, TANG Guo-qiang3, HUANG Xiang-neng1, CAI Kun-zheng1,2, CAI Yi-xia1,2, HUANG Fei1,2 |
1. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; 2. Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; 3. College of Agriculture, South China Agricultural University, Guangzhou 510642, China |
|
|
Abstract Three types of biochar were generated from eucalyptus leaves under different pyrolysis temperatures of 300,500and 700℃(referred as BC300,BC500 and BC700),and their surface characteristics and Cd (Ⅱ) adsorption processes were investigated using element analysis,BET-N2,Zeta analysis,Boehm titration,SEM-EDS,FTIR and other analytical methods.The results showed that as pyrolysis temperature increased,the yields decreased,but the ash content,pH,specific surface area and Zeta potential increased.The adsorptive capacity followed in the order of BC700(94.32mg/g),BC500(67.07mg/g) and BC300(60.38mg/g),and both Langmuir and Freundlich models were reasonable to describe the adsorption behavior of BC300and BC500,but Freundlich model was more suitable to describe the adsorption processes of BC700.Adsorption kinetic showed the equilibrium time followed by 540min (BC300),360min (BC500) and 80min (BC700),which were better fitted by pseudo-second order model (R2>0.98) indicating the adsorption was mainly chemical.The results of FTIR and Boehm titration indicated that the spectra of BC700incurred more changes than those of other biochars,which suggested more functional groups were involved in the adsorption including -OH、C=O、C=C、C-O groups.BC700biochar are more effective than other biochars to remove Cd2+,which was due to larger specific surface,more negative charge amount and functional groups.Based on the studies above,the removal of Cd2+ were mainly by surface electrostatic adsorption and chelation.
|
Received: 28 July 2017
|
|
|
|
|
[1] |
简敏菲,高凯芳,余厚平.不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016,36(5):1757-1765.
|
[2] |
郑凯琪,王俊超,刘姝彤,等.不同热解温度污泥生物炭对Pb2+、Cd2+的吸附特性[J]. 环境工程学报, 2016,10(12):7277-7282.
|
[3] |
Chun Y, Sheng G G, Chiou C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science and Technology, 2004,38(17):4649-4655.
|
[4] |
陈宝梁,周丹丹,朱利中,等.生物碳吸附剂对水中有机污染物的吸附作用及机理[J]. 中国科学B辑:化学, 2008,38(6):530-537.
|
[5] |
戴静,刘阳生.四种原料热解产生的生物炭对Pb2+和Cd2+的吸附特性研究[J]. 北京大学学报(自然科学版), 2013,49(6):1075-1082.
|
[6] |
王震宇,刘国成,Monica Xing等.不同热解温度生物炭对Cd(Ⅱ)的吸附特性[J]. 环境科学, 2014,35(12):4735-4744.
|
[7] |
Li M, Lou Z, Wang Y, et al. Alkali and alkaline earth metallic (AAEM) species leaching and Cu(Ⅱ) sorption by biochar[J]. Chemosphere, 2015,119:778-785.
|
[8] |
李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J]. 农业环境科学学报, 2012,31(11):2277-2283.
|
[9] |
楚颖超,李建宏,吴蔚东.椰纤维生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(VI)的吸附[J]. 环境工程学报, 2015,9(5):2165-2170.
|
[10] |
Cao X D, Ma L, Gao B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science and Technology, 2009,43:3285-3291.
|
[11] |
王俊超,郑凯琪,俞筱妍,等.垫料生物炭对Cd2+的吸附性能[J]. 环境工程学报, 2016,10(11):6655-6661.
|
[12] |
Zhang F, Wang X, Yin D. et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes)[J]. Journal of Environmental Management, 2015,153:68-73.
|
[13] |
Kolodyńska D, Krukowska J, Thomas P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon[J]. Chemical Engineering Journal, 2017,307:353-363.
|
[14] |
汪昆平,徐乾前.几种不同处理方法对活性炭表面化学性质的影响[J]. 环境工程学报, 2012,6(2):373-380.
|
[15] |
常春,王胜利,郭景阳,等.不同热解条件下合成生物炭对铜离子的吸附动力学研究[J]. 环境科学学报, 2016,36(7):2491-2502.
|
[16] |
林珈羽,张越,刘沅,等.不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016,10(6):3200-3206.
|
[17] |
杜文慧,朱维琴,潘晓慧,等.牛粪源蚓粪及其生物炭对Pb2+、Cd2+的吸附特性[J]. 环境科学, 2016,38(5):1-11.
|
[18] |
张建强,黄雯,陈佼,等.羊粪生物炭对水体中诺氟沙星的吸附特性[J]. 环境科学学报, 2017,DOI:10.13671/j.hjkxxb.2017. 0062.
|
[19] |
王彤彤,马江波,曲东,等.两种木材生物炭对铜离子的吸附特性及其机制[J]. 环境科学, 2016,38(5):1-16.
|
[20] |
杨选民,王雅君,邱凌,等.温度对生物质三组分热解制备生物炭理化特性的影响[J]. 农业机械学报, 2017,48(3):1-9.
|
[21] |
Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011,102:3488-3497.
|
[22] |
Al-Wabel M, Al-Omran, A, El-Naggar, A H, et al. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpuswastes[J]. Bioresource Technology, 2013,131:374-379.
|
[23] |
Hossain M, Strezov V, Chan K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011, 92:223-228.
|
[24] |
马锋锋,赵保卫,刁静茹.小麦秸秆生物炭对水中Cd(Ⅱ)的吸附特性研究[J]. 中国环境科学, 2017,37(2):551-559.
|
[25] |
马天行,杨琛,江鲜英,等.纳米零价铁改性氨基生物炭的制备及对Cd(Ⅱ)的吸附和解吸特性[J]. 环境工程学报, 2016, 10(10):5433-5439.
|
[26] |
范世锁,李雪,胡凯,等.污泥基生物炭吸附重金属Cd的动力学和热力学[J]. 环境工程学报, 2016,10(10):5971-5977.
|
[27] |
Zhao Y F, Zhang B, Zhang X, et al. Preparation of highly ordered cubic NaA zeolite from halloysite mineral for adsorption of ammonium ions[J]. Journal of Hazardous Materials, 2010, 178(1-3):658-664.
|
[28] |
徐楠楠,林大松,徐应明,等.玉米秸秆生物炭对Cd2+的吸附特性及影响因素[J]. 农业环境科学学报, 2014,(5):958-964.
|
[29] |
Park C M, Han J, Chu K H, et al. Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar:Experiment and modeling[J]. Journal of Industrial and Engineering Chemistry, 2017,48:186-193.
|
[30] |
Kim W K, Shim T, Kim Y S, et al. Characterization of cadmium removal aqueous solutions by biochar produced from a giant Miscanthus at different pyrolytic temperatures[J]. Bioresource Technology, 2013,138:266-270.
|
[31] |
Xu X Y, Cao X, Zhao L, et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar[J]. Environmental Science and Pollution Research, 2013,20:358-368.
|
[32] |
Sun J, Lian F, Liu Z, et al. Biochars derived from various crop straws:characterization and Cd(Ⅱ) removal potential[J]. Ecotoxicology and Environmental safety, 2014,106:226-231.
|
[33] |
Wang S, Ma Z, Xue Y, et al. Sorption of lead(Ⅱ), cadmium(Ⅱ), and copper(Ⅱ) ions from aqueous solutions using tea waste[J]. Industrial & Engineering Chemistry Research, 2014,53:3629-3635.
|
[34] |
Lu H, Zhang W, Yang Y, et al. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar[J]. Water Research, 2012,46:854-862.
|
[35] |
Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014,99:19-33.
|
[36] |
Tao X, Liu Y, Zeng G, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015,125:70-85.
|
[37] |
Xu X Y, Schierz A, Xu N, et al. Comparison of the characteristics and mechanisms of Hg(Ⅱ) sorption by biochars and activated carbon[J]. Journal of Colloid and Interface Science, 2015,463:55-60.
|
|
|
|