|
|
Diversity characteristic of archaeal community responding to soil anion in saline-alkali soil |
YU Bing-qian1, YANG Sai1, ZHU Lin2, GAO Feng2, ZENG Chun-lin2, LIU Shen-kui3, CUI Heng-lin2, WEI wei1 |
1. Jiangsu Provincial Key Laboratory of Modern Agricultural Equipment and Technology, Zhenjiang 212013, China;
2. School of Food Bioengineering, Jiangsu University, Zhenjiang 212013, China;
3. Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China |
|
|
Abstract To investigate the community structure of soil archaea in saline-alkaline land and their distribution characters responding to soil anion, the saline-alkaline land soils were collected from different area in China, including Heilongjiang soda saline-alkaline soil (HA), Xinjiang desert saline-alkaline soil (XD), Shanxi plain saline-alkaline soil (SY), Jiangsu coastal saline-alkaline soil (JD) and Tianjin coastal saline-alkaline soil (TB). The high-throughput sequencing technology based on Illumina-Hiseq was used, and 489~604 archaeal operational taxonomic units (OTUs) were obtained. The results of OTU diversity analysis showed that the species richness of archaeal community in XD was the highest. The diversity and evenness of archaeal community in SY and HA was highest and lowest, respectively. The OTU species annotation results showed the Thaumarchaeota was the predominant phylum in HA, and Euryarchaeota was dominant phylum in the other four soil samples. Based on the archaeal community structure, dominant archaeal genus and soil anion of five samples, the Canonical Correspondence Analysis (CCA) showed that the archaeal community structure in XD and Haloterrigena (the most dominant in XD, 20.2%) responsed to the concentration of SO42-, the archaeal community structure in HA and Nitrososphaera (the most dominant in HA, 62.3%) responsed to the concentration of HCO3-/CO32- and pH value; the archaeal community structure of JD、SY and TB and Halorubrum (the most dominant in JD and TB, 24.4% and 15.6%) and Natronomonas (the second dominant in SY and JD, 8.1% and 9.2%) responsed to the concentration of Cl-. Thus, the archaeal community structure and distribution characteristics in saline-alkaline soils in China were affected by the types of anions and their concentrations. The results of this study contribute to not only the resources excavation of archaeal strains, but also the revealing of the ecological functions of archaeal communities in the different types of saline-alkaline soil in China.
|
Received: 20 November 2017
|
|
|
|
|
[1] |
俞仁培,陈德明.我国盐渍土资源及其开发利用[J]. 土壤通报, 1999, 30(4):158-159.
|
[2] |
熊毅.中国盐渍土分区[J]. 土壤学报, 1957,5(1):50-60.
|
[3] |
陈义光,李汇明,李沁元,等.一平浪盐矿古老岩盐沉积中可培养细菌的系统发育多样性研究[J]. 微生物学报, 2007,47(4):571-577.
|
[4] |
王爽.大庆盐碱土可培养嗜盐细菌与古菌多样性及多相分类研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
|
[5] |
Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eucarya.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990,87(12):4576-4579.
|
[6] |
Poli A, Di D P, Abbamondi G R, et al. Synthesis,production,and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea[J]. Archaea-an International Microbiological Journal, 2011,11:1472-3646.
|
[7] |
Jain D, Pancha I, Mishra S K, et al. Purification and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.:A potential additive for laundry detergents[J]. Bioresource Technology, 2012,115:228-236.
|
[8] |
Kirk J L, Beaudette L A, Hart M, et al. Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods, 2004,58(2):169-188.
|
[9] |
张汉波,段昌群,屈良鹄.非培养方法在土壤微生物生态学研究中的应用[J]. 生态学杂志, 2003,22(5):131-136.
|
[10] |
Wang C, Wang G, Wang Y, et al. Fire Alters Vegetation and Soil Microbial Community in Alpine Meadow[J]. Land Degradation & Development, 2016,27(5):1379-1390.
|
[11] |
Dong X, Reddy G B. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J]. Bioresour Technol, 2010,101(4):1175-1182.
|
[12] |
Burns K N, Bokulich N A, Cantu D, et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes:Differentiation by vineyard management[J]. Soil Biology & Biochemistry, 2016,103:337-348.
|
[13] |
De G V, Eudoxie G, Hickey W J. Prokaryotic successions and diversity in composts as revealed by 454-pyrosequencing[J]. Bioresource Technology, 2013,133(2):573-580.
|
[14] |
朱琳,曾椿淋,李雨青,等.基于高通量测序的大豆连作土壤细菌群落多样性分析[J]. 大豆科学, 2017,36(3):419-424.
|
[15] |
Peng M, Jia H, Wang Q. The effect of land use on bacterial communities in saline-alkali Soil[J]. Current Microbiology, 2017, 74(3):325.
|
[16] |
李新,焦燕,代钢,等.内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性[J]. 中国环境科学, 2016,36(1):249-260.
|
[17] |
李海云,牛世全,孔维宝,等.河西走廊石羊河下游地区盐碱土中放线菌多样性——以民勤县为例[J]. 中国环境科学, 2015,35(6):1805-1813.
|
[18] |
鲍士旦.土壤农化分析[M]. 北京:中国农业出版社, 2000.
|
[19] |
杨春霞,李彩虹,赵银宝.离子色谱法测定土壤中无机阴阳离子含量[J]. 理化检验:化学分册, 2012,48(10):001199-1202.
|
[20] |
Degnan P H, Ochman H. Illumina-based analysis of microbial community diversity[J]. Isme Journal, 2012,6(1):183.
|
[21] |
Haas B J, Gevers D, Earl A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research, 2011,21(3):494.
|
[22] |
Edgar R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013,10(10):996-998.
|
[23] |
Youssef N, Sheik C S, Krumholz L R, et al. Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys[J]. Applied & Environmental Microbiology, 2009,75(16):5227-5236.
|
[24] |
Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010,7(5):335.
|
[25] |
李秋华,韩博平.基于CCA的典型调水水库浮游植物群落动态特征分析[J]. 生态学报, 2007,27(6):2355-2364.
|
[26] |
Madigan M T. Brock Biology of Microorganisms[J]. 2014, 11(2008).
|
[27] |
Oren A. Taxonomy of halophilic Archaea:current status and future challenges[J]. Extremophiles Life Under Extreme Conditions, 2014, 18(5):825-834.
|
[28] |
崔恒林.嗜盐古菌分类学研究进展[J]. 微生物学通报, 2016,43(5):1113-1122.
|
[29] |
张玥,孔强,郭笃发,等.黄河三角洲土壤古菌群落结构对盐生植被演替的响应[J]. 中国环境科学, 2016,36(7):2162-2168.
|
[30] |
楼骏.中国纬度地带性土壤古菌微生物群落结构多样性[D]. 福州:福建农林大学, 2014.
|
[31] |
罗剑飞,林炜铁,LuoJian-fei,等.氨氧化古菌研究进展[J]. 广州:华南理工大学学报(自然科学版), 2013,(12):107-114.
|
[32] |
刘晶静,吴伟祥,丁颖,等.氨氧化古菌及其在氮循环中的重要作用[J]. 应用生态学报, 2010,21(8):2154-2160.
|
[33] |
Könneke M, Bernhard A E, De La Torre J R, et al.Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005,437:543-546.
|
[34] |
于少兰.黄东海泥质区沉积物氨氧化古菌和氨氧化细菌amoA基因的空间分布[D]. 青岛:中国海洋大学, 2015.
|
[35] |
Tourna M, Freitag T E, Nicol G W, et al. Growth, activity and temperature responses of ammonia-oxidizing archae and bacteria in soil microcosms[J]. Environmental Microbiology, 2008,10(5):1357-1364.
|
[36] |
申卫收,尹睿,林先贵,等.绰墩山遗址古水稻土细菌与古菌群落的PCR-DGGE分析[J]. 生态学报, 2008,28(6):2916-2924.
|
[37] |
孟祥伟,茆振川,陈国华,等.西藏米拉山土壤古菌16S rRNA及amoA基因多样性分析[J]. 微生物学报, 2009,49(8):994-1002.
|
[38] |
秦楠,栗东芳,杨瑞馥.高通量测序技术及其在微生物学研究中的应用[J]. 微生物学报, 2011,51(4):445-457.
|
[39] |
蔡言安,李冬,毕学军,等.基于不同测序技术的生物群落结构及功能菌分析[J]. 中国环境科学, 2016,36(6):1830-1834.
|
[40] |
夏围围,贾仲君.高通量测序和DGGE分析土壤微生物群落的技术评价[J]. 微生物学报, 2014,54(12):1489-1499.
|
[41] |
牛世全,龙洋,李海云,等.应用IlluminaMiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J]. 微生物学通报, 2017,(9):2067-2078.
|
|
|
|