|
|
Characteristics and source analysis of organic carbon buried in sediments of Fuxian Lake |
LAI Shan1,2, WAN Hong-bin1, TANG Fang1, YANG Hao1, HUANG Chang-chun1,2, ZHANG Zhi-gang1,2, HUANG Tao1,2 |
1. College of Geography Science, Nanjing Normal University, Nanjing 210023, China;
2. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract To investigate the burial and source characteristics of organic carbon in the sediments of Fuxian Lake over the past 100years, the sediment cores in the north and south of Fuxian Lake were taken as objects to analyze the temporal and spatial variation characteristics of organic carbon accumulation rates. The sources variation characteristics of organic carbon buried in sediments were analyzed by using n-alkanes and their distribution characteristics. The results showed that, in sediments the TOC contents ranged from 1.79 to 29.39mg/g, and OCAR ranged from 3.07 to 27.71g/(m2·a), both of which showed an overall upward trend since 1880 and the growth rates accelerated significantly since 1980. The organic carbon contents in the north(8.70mg/g) were less than those in the south(12.59mg/g), while the OCAR were higher in northern(13.54g/(m2·a) than southern(8.29g/(m2·a). It was related to source types of organic matter and the environmental changes caused by the increasing of human activities in Fuxian Lake basin. The carbon numbers of n-alkanes in the sediments ranged from C12 to C33, which were dominated by high carbon components with obvious odd and even advantages, and mainly composed of high carbon arrays, indicated that the organic matters in the sediments mainly came from higher plants. The Paq indicated that submerged plants predominated in aquatic plant. 2C31/(C27+C29) and ACL27~33 indicated that herbaceous plants and woody plants contributed equally to terrestrial higher plant. The contribution of aquatic plants in the northern lake was greater than that in the southern lake while the contribution of terrestrial higher plants in the southern lake was greater than that in the northern lake.
|
Received: 01 August 2019
|
|
|
|
|
[1] |
周德全.湖泊沉积记录与过去全球变化[J]. 矿物岩石地球化学通报, 2006,25(3):260-265. Zhou D Q. Lacustrine sedimentary records and past global change[J]. Bull Mineral Petrol Geochem, 2006,25(3):260-265.
|
[2] |
宋以龙,陈敬安,杨海全,等.云南抚仙湖沉积物有机质来源与时空变化特征[J]. 矿物岩石地球化学通报, 2016,35(4):618-624. Song Y L, Chen J A, Yang H Q, et al. Distribution and source of the organic matter in the sediment of Fuxian Lake, Yunnan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016,35(4):618-624.
|
[3] |
Sobek S, Roland Zurbrügg, Ostrovsky I. The burial efficiency of organic carbon in the sediments of Lake Kinneret[J]. Aquatic Sciences, 2011,73(3):355-364.
|
[4] |
Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes reservoirs and peatlands[J]. Geology, 1998,26(6):536-538.
|
[5] |
Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007,10(1):171-184.
|
[6] |
Tranvik L J, Downing J A, Cotner J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology & Oceanography, 2009,54(6part2):2298-2314.
|
[7] |
韩秀秀,黄晓虎,余丽燕,等.滇池沉积物有机质沉积特征与来源解析[J]. 环境科学, 2017,38(1):78-86. Han X X, Huang X H, Yu LY, et al. Sedimentary characteristics and sources of organic matter in sediments of Dianchi Lake[J]. Environmental Science, 2017,38(1):78-86.
|
[8] |
欧杰,王延华,杨浩,等.正构烷烃及单体碳同位素记录的石臼湖生态环境演变研究[J]. 环境科学, 2013,34(2):484-493. Ou J, Wang Y H, Yang H, et al. Eco-environmental evolution inferred from n-Alkanes and δ13C records in the sediments of Shijiu Lake[J]. Environmental Science, 2013,34(2):484-493.
|
[9] |
张成艳,成小英,董海良,等.库赛湖沉积物中正构烷烃的分布特征及古环境意义[J]. 地质科技情报, 2015,34(1):72-77. Zhang C Y, Cheng X Y, Dong H L, et al. Distribution of N-Alkanes in sediment core and implications of paleoenvironments of Kusai Lake[J]. Geological Science and Technology Information, 2015,34(1):72-77.
|
[10] |
刘嘉丽,刘强,伍婧,等.大兴安岭四方山天池全新世以来沉积物正构烷烃分布,单体碳同位素特征及古环境意义[J]. 湖泊科学, 2017,29(2):498-511. Liu J L, Liu Q, Wu J, et al. N-alkanes distributions and compoundspecific carbon isotope records and their paleoenviromental significance of sediments from Lake Sifangshan in the Great Khingan Mountain, Northeastern China[J]. Journal of Lake Science, 2017, 29(2):498-511.
|
[11] |
沈贝贝,吴敬禄,曾海鳌,等.网湖沉积物正构烷烃分布特征及其记录的环境变化[J]. 环境科学, 2017,38(9):3682-3688. Shen B B, Wu J L, Zeng H A, et al. Distribution of n-alkanes from Lake Wanghu sediments in relation to environmental changes[J]. Environmental Science, 2017,38(9):3682-3688.
|
[12] |
Enno Schefuß, Ratmeyer V, Stuut J B W, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta, 2003, 67(10):1757-1767.
|
[13] |
李荫玺,刘红,陆娅,等.抚仙湖富营养化初探[J]. 湖泊科学, 2003,15(3):285-288. Li Y X, Liu H, Lu Y, et al. Preliminary studies on eutrophication in Fuxian lake[J]. Journal of Lake Science, 2003,15(3):285-288.
|
[14] |
吴献花,李荫玺,侯长定.抚仙湖环境现状分析[J]. 玉溪师范学院学报, 2002,18(2):70-72. Wu X H, LI Y X, Hou C D. The current situation analyses of Fuxian Lake[J]. Journal of Yuxi Teachers College, 2002,18(2):70-72.
|
[15] |
倪建宇,周怀阳,张美,等.云南抚仙湖水体营养元素分布及其对人为扰动的响应[J]. 湖泊科学, 2004,16(2):133-140. Ni J Y, Zhou H Y, Zhang M, et al. Nutrients distribution in Fuxian Lake and its response to human disturbance[J]. Journal of Lake Science, 2004,16(2):133-140.
|
[16] |
熊飞,李文朝,潘继征,等.云南抚仙湖沉水植物分布及群落结构特征[J]. 云南植物研究, 2006,28(3):277-282. Xiong F, Li W C, Pan J Z, et al. Distribution and community structure characteristics of submerged macrophytes in Lake Fuxian, Yunnan Province[J]. Acta Botanica Yunnanica, 2006,28(3):277-282.
|
[17] |
王小雷,杨浩,顾祝军,等.抚仙湖沉积物中营养盐和粒度垂向分布及相关性研究[J]. 环境工程技术学报, 2014,5(4):353-360. Wang X L, Yang H, Gu Z J, et al. Vertical distribution and correlation of nutrients and grain sizes in sediment cores of Lake Fuxian[J]. Journal of Environmental Engineering Technology, 2014,4(5):353-360.
|
[18] |
刘颖,孙惠玲,周晓娟,等.过去5000a以来抚仙湖沉积物有机质碳同位素的古环境指示意义[J]. 湖泊科学, 2017,29(3):722-729. Liu Y, Sun H L, Zhou X J, et al. Paleoenvironmental significance of organic carbon isotope in lacustrine sediments in Lake Fuxian during the past 5ka[J]. Journal of Lake Science, 2017,29(3):722-729.
|
[19] |
李芸,李宝芬,罗丽艳.云南抚仙湖流域年降水量时空分布特征研究[J]. 人民长江, 2016,47(21):48-51. Li Y, Li B F, Luo L Y. Study on spatial and temporal distribution feature of annual precipitation over Fuxian Lake Basin in Yunnan Province[J]. Yangtze River, 2016,47(21):48-51.
|
[20] |
王小雷,杨浩,赵其国,等.利用210Pb,137Cs和241Am计年法测算云南抚仙湖现代沉积速率[J]. 湖泊科学, 2010,22(1):136-142. Wang X L, Yang H, Zhao Q G, et al. Radionuclide dating (210Pb, 137Cs, 241Am) and modern sedimentation rate in Lake Fuxian[J]. Journal of Lake Science, 2010,22(1):136-142.
|
[21] |
刘勇,朱元荣,弓晓,等.滇池近代富营养化加剧过程的沉积记录[J]. 环境科学研究, 2012,25(11):1236-1242. Liu Y, Zhu Y R, Gong X F, et al. Sedimentary records of accelerated eutrophication in Dianchi Lake over the recent decades[J]. Research of Environmental Sciences, 2012,25(11):1236-1242.
|
[22] |
Huang C C, Zhang L L, Li Y M, et al. Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms.[J]. Science of the Total Environment, 2017,616-617:296.
|
[23] |
刘会基,刘恩峰,于真真,等.近百年来洱海沉积物有机碳埋藏时空变化[J]. 湖泊科学, 2019,31(1):282-292. Liu H J, Liu E F, Yu Z Z, et al. Spatio-temporal patterns of organic carbon burial in the sediment of Lake Erhai in China during the past 100years[J]. Journal of Lake Science, 2019,31(1):282-292.
|
[24] |
张风菊,薛滨,姚书春,等.中全新世以来呼伦湖沉积物碳埋藏及其影响因素分析[J]. 湖泊科学, 2018,30(1):234-244. Zhang F J, Xue B, Yao S C, et al. Organic carbon burial and its driving mechanism in the sediment of Lake Hulun, northeastern Inner Mongolia, since the mid-Holocene[J]. Journal of Lake Science, 2018, 30(1):234-244.
|
[25] |
Xu H, Lan J H, Liu B, et al. Modern carbon burial in Lake Qinghai China[J]. Applied Geochemistry, 2013,39:150-155.
|
[26] |
Yu Q, Wang F, Yan W, et al. Carbon and nitrogen burial and response to climate change and anthropogenic disturbance in Chaohu Lake China[J]. International Journal of Environmental Research and Public Health, 2018,15(12).
|
[27] |
Kastowski M, Hinderer M, Vecsei A. Long-term carbon burial in European lakes:Analysis and estimate[J]. Global Biogeochemical Cycles, 2011,25(3):GB3019.
|
[28] |
Ferland M E, Del Giorgio P A, Teodoru C R, et al. Long-term C accumulation and total C stocks in boreal lakes in northern Québec[J]. Global Biogeochemical Cycles, 2012,26(4):GB0E04.
|
[29] |
Sobek S, Anderson N J, Bernasconi S M, et al. Low organic carbon burial efficiency in arctic lake sediments[J]. Journal of Geophysical Research:Biogeosciences, 2014,119(6):1231-1243.
|
[30] |
Gudasz C, Bastviken D, Steger K, et al. Temperature-controlled organic carbon mineralization in lake sediments[J]. Nature, 2010, 466(7305):478-481.
|
[31] |
Ferland M E, Prairie Y T, Teodoru C R, et al. Linking organic carbon sedimentation burial efficiency and long-term accumulation in boreal lakes[J]. Journal of Geophysical Research:Biogeosciences, 2014, 119(5):836-847.
|
[32] |
Heathcote A J, Downing J A. Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape[J]. Ecosystems, 2012,15(1):60-70.
|
[33] |
Anderson N J, Dietz R D, Engstrom D R. Land-use change not climate controls organic carbon burial in lakes[J]. Proceedings of the Royal Society B:Biological Sciences, 2013,280(1769):20131278-20131278.
|
[34] |
郝盛吞,周爱锋,张晓楠,等.湖泊沉积有机碳埋藏效率及其影响要素研究进展[J]. 地球环境学报, 2017,8(4):292-306. Hao S T, Zhou A F, Zhang X N, et al. Progress of research on the burial efficiency of organic carbon and its influencing factors in lacustrine sediments[J]. Journal of Earth Environment, 2017,8(4):292-306.
|
[35] |
Lan J H, Xu H, Liu B, et al. A large carbon pool in lake sediments over the arid/semiarid region NW China[J]. Acta Geochimica, 2015, 34(3):289-298.
|
[36] |
赵耀,李超,王栋,等.抚仙湖流域蒸发与降水的变化趋势及原因分析[J]. 山东农业科学, 2017,49(10):106-111. Zhao Y, Li C, Wang D, et al. Variation trend and cause analysis of evaporation and precipitation in Fuxian Lake watershed[J]. Shandong Agricultural Sciences, 2017,49(10):106-111.
|
[37] |
王林,刘宇,祁云宽,等.抚仙湖流域社会经济发展与环境压力分析[J]. 环境科学导刊, 2011,30(5):30-32. Wang L, Liu Y, Qi Y K, et al. Analysis on social economic development and environmental pressure of Fuxian Lake basin[J]. Environmental Science Survey, 2011,30(5):30-32.
|
[38] |
房吉敦,吴丰昌,熊永强,等.中国典型湖泊沉积物中脂肪烃的分布特征及来源[J]. 环境科学研究, 2010,23(10):1243-1249. Fang J D, Wu F C, Xiong YQ, et al. Distribution characteristics and origins of aliphatic hydrocarbons in sediments from typical lakes in China[J]. Research of Environmental Sciences, 2010,23(10):1243-1249.
|
[39] |
Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions:A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003,34(2):261-289.
|
[40] |
李存林,马素萍,常福宣,等.青藏高原北部土壤正构烷烃氢同位素及物源意义[J]. 中国环境科学, 2019, 39(5):2095-2105. Lin C L, Ma S P, Chang F X, et al. n-Alkanes hydrogen isotopes in soil from the northern region, Tibetan Plateau:Implications for sources of organic matter[J]. China Environmental Science, 2019,39(5):2095-2105.
|
[41] |
Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II[J]. Organic Geochemistry, 1987,11(6):513-527.
|
[42] |
Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000,31(7):745-749.
|
[43] |
房吉敦,吴丰昌,熊永强,等.滇池湖泊沉积物中游离类脂物的有机地球化学特征[J]. 地球化学, 2009,38(1):96-104. Fang J D, Wu F C, Xiong Y Q, et al. Organic geochemical characteristics of free lipids in Lake Dianchi sediments[J]. Geochimica, 2009,38(1):96-104.
|
|
|
|