|
|
Phosphorus assimilation process by dominant algaespecies in Chinesecoastal sea |
QU Ying-xue1, JIN Jie2, XU Wen-qi1, LIU Su-mei1,3 |
1. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
2. State Key Laboratory of Estuary and Coastalology, East China Normal University, Shanghai 200062;
3. Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China |
|
|
Abstract The growth of algaes and the response of cell-bound phosphorus to phosphate were studied by the field sampling and indoor culture experiments. The cell-bound phosphorus pool of phytoplankton from the bloom station and non-bloom station were different. The maximum P-Uptake rates of Skeletonema costatum and Prorocentrum donghaiensis were 7.71 and 2.39μmol/(L·d),the maximum specific growth rates of themwere 0.517 and 0.262d-1, the P-assimilation rates of them were 5.9×10-8 and 4.7×10-7μmol/cell, respectively. S. costatum showed higher P-Uptake capacity,faster specific growth rate and lower P-assimilation rate compared with P. donghaiensis during the incubation period. The intracellular phosphorus, which is the main form of cell phosphorus pool, usually accounts for more than 50% of total cellular phosphorus pool. The S.costatum could utilize phosphorus from the environment by cell multiplication. While P.donghaiensis preferentially satisfied the phosphorus storage in cells. The contents of cell associated phosphorus in the cell of P.donghaiensis could reach saturation in phosphorus rich waters. When phosphorus was deficient, the mass concentration of intracellular phosphorus in S.costatum and P.donghaiensis decreased by 45% and 66%, respectively, compared with the start of the experiment. During the culturing, the cell surface-adsorbed phorsphous(95%) of the single cell of S.costatum decreased more than intracellular phosphorus(50%), while P.donghaiensiswas different from it.
|
Received: 13 August 2019
|
|
|
|
|
[1] |
于仁成,张清春,孔凡洲,等.长江口及其邻近海域有害藻华的发生情况、危害效应与演变趋势[J]. 海洋与湖沼, 2017,48(6):1178-1186. Yu R C, Zhang Q C, Kong F Z, et al. Status, impacts and long-term changes of harmful algal blooms in the sea area adjacent to the Changjiang River Estuary[J]. Oceanologia et Limnologia Sinica, 2017,48(6):1178-1186.
|
[2] |
2010~2017年中国海洋灾害公报[R]. 北京:国家海洋局, 2010-2017. State Oceanic Administration. China marine disaster bulletin from 2010 to 2017[R]. Beijing:State OceanicAdministration, 2010-2017.
|
[3] |
吴昊.黄海海域浒苔灾害和沿海城市气温的特征分析[J]. 遥感信息, 2019,34(2):98-103. Wu H. Characteristics of Enteromorpha prolifera disaster and temperature in coastal cities in the Yellow Sea[J]. Remote sensing information, 2019,34(2):98-103.
|
[4] |
Zhou M J, Shen Z L, Yu R C. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research, 2008,28(12):1483-1489.
|
[5] |
Shen L, Xu H P, Guo X L, et al. Oceanography of Skeletonema costatum harmful algal blooms in the East China Sea using MODIS and QuickSCAT satellite data[J]. Journal of Applied Remote Sensing, 2012,6(063529):1-18.
|
[6] |
黄海燕,康林冲,杨翼,等.2013年我国近海赤潮引发种类和分布研究[J]. 海洋科学, 2016,40(11):17-27. Huang H Y, Kang L C, Yang Y, et al. Species composition and distribution of red tide causative organisms in the coastal waters of China in 2013[J]. Ocean Science, 2016,40(11):17-27.
|
[7] |
何宗健,熊强,焦立新,等.夏季滇池不同来源溶解性有机磷特征及其生物有效性[J]. 中国环境科学, 2014,34(12):3189-3198. He Z J, Xiong Q, Jiao L X, et al. Characteristics and bioavailability of dissolved organic phosphorus from different sources in Dianchi Lake in summer[J]. China Environmental Science, 2014,34(12):3189-3198.
|
[8] |
赵行行,刘妍忻,宋明,等.东港赤潮监控区中肋骨条藻生长的主要环境因子影响分析[J]. 环境与发展, 2018,30(11):13-15. Zhao H H, Liu Y X, Song M, et al. Influence of environmental factors on the growth of Skeletonema costatum in the Donggang red-tidemonitoring area of Liaoning[J]. Inner Mongolia Environmental Sciences, 2018,30(11):13-15.
|
[9] |
张传松.长江口及邻近海域赤潮生消过程特征及其营养盐效应分析[D]. 青岛:中国海洋大学, 2008. Zhang C S. Characteristics of red tide generation and dissipation and its nutrient effect in The Yangtze River Estuary and adjacent sea areas[D]. Qingdao:Ocean University of China, 2008.
|
[10] |
陆斗定,齐雨藻, Jeanette,等.东海原甲藻修订及与相关原甲藻的分类学比较[J]. 应用生态学报, 2003,14(7):1060-1064. Lu D D, Qi Y Z, Jeanette, et al.Revision of Prorocentrum Donghai and Taxonomic comparison with related prodinoflagellates[J]. Journal of Applied Ecology, 2003,14(7):1060-1064.
|
[11] |
刘志国,王金辉,蔡贡,等.米氏凯伦藻分布及其引发赤潮的发生规律研究[J]. 国土与自然资源研究, 2014,(1):38-41. Liu Z G, Wang J H, Cai G, et al. Study on the distribution of Karena Michaeli and the occurrence of red tide[J]. Land and natural resources research, 2014,(1):38-41.
|
[12] |
Cade-Menun B J, Paytan A. Nutrient temperature and light stress alter phosphorus and carbon forms in culture-grown algae[J]. Marine Chemistry, 2010,121(1-4):27-36.
|
[13] |
赵水东.温度、盐度和营养盐对东海原甲藻生长的影响[D]. 广州:暨南大学, 2006. Zhao S D. Effects of temperature, salinity and nutrients on the growth of Prorocentrum Donghai[D]. Guangzhou:Jinan University, 2006.
|
[14] |
Lai J X, Yu Z M, Song X X, et al. Responses of the growth and biochemical composition of Prorocentrum donghaiense to different nitrogen and phosphorus concentrations[J]. Journal of Experimental Marine Biology and Ecology, 2011,405(1):6-17.
|
[15] |
Zhao Y F, Yu Z M, Song X X, et al. Biochemical compositions of two dominant bloom-forming species isolated from the Yangtze River Estuary in response to different nutrient conditions[J]. Journal of Experimental Marine Biology and Ecology, 2009,368(1):30-36.
|
[16] |
Tantanasarit C, Englande A J, Babel S. Nitrogen, phosphorus and silicon uptake kinetics by marine diatom Chaetoceros calcitrans under high nutrient concentrations[J]. Journal of Experimental Marine Biology and Ecology, 2013,446:67-75.
|
[17] |
庞瑛.四种水华蓝藻磷吸收存储机制研究[D]. 昆明:云南大学, 2016. Pang Y. Study on Phosphorus Absorption and storage mechanisms of four Cyanobacteria blooms[D]. Kunming:Yunnan University, 2016.
|
[18] |
苏玉萍,张立香,陈杨锋,等.有机磷培养下水体浮游植物竞争与群落结构演替[J]. 生态学报, 2018,38(16):5679-5687. Su Y P, Zhang L X, Chen Y F, et al. Competition of phytoplankton and succession of community structure under organic phosphorus culture[J]. Journal of Ecology, 2018,38(16):5679-5687.
|
[19] |
覃仙玲,陈波,赖俊翔,等.球形棕囊藻北部湾株对不同形态磷源的利用及碱性磷酸酶特性研究[J]. 广西科学, 2018,25(1):80-86. Tan X L, Chen B, Lai J X, et al. Utilization of different forms of phosphorus sources and alkaline phosphatase characteristics of the Beibu Bay strain of Phaeocystis globosa[J]. Guangxi Science, 2018, 25(1):80-86.
|
[20] |
Huang, B Q, Ou, L J, Hong, H S, et al. Bioavailability of dissolved organic phosphorus compounds to typical harmful dinoflagellate Prorocentrum donghaiense Lu[J]. Marine Pollution Bulletin, 2005a, 51(8-12):838-844.
|
[21] |
夏威.东海原甲藻和米氏凯伦藻对氮、磷限制的分子响应机制研究[D]. 广州:暨南大学, 2016. Xia W. Molecular Response Mechanisms of Prorocentrum Donghai and Karena Michaeli to Nitrogen and Phosphorus Restrictions[D]. Guangzhou:Jinan University, 2016.
|
[22] |
王举,陈荣,雷振,等.不同磷源条件下铜绿微囊藻生长的锰作用特性[J]. 环境科学与技术, 2018,41(11):9-14. Wang Ju, Chen Rong, Lei Zheng, et al. Manganese action characteristics of Microcystis aeruginosa growth under different phosphorus sources[J]. Environmental Science and Technology, 2018, 41(11):9-14.
|
[23] |
Ketchum B H. The absorption of phosphate and nitrate by illuminated cultures of nitzschia closterium[J]. American Journal of Botany, 1939,26(6):399-407.
|
[24] |
Sanudo-Wilhelmy S A, Tovar-Sanchez A, Fu F X, et al. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry[J]. Nature, 2004,432(7019):897-901.
|
[25] |
姚波,席北斗,胡春明,等.缺磷胁迫后四尾栅藻在富磷环境中对磷的吸收动力学[J]. 环境科学研究, 2010,23(4):420-425. Yao Bo, Xibeidou, Hu Chunming, et al. Kinetics of phosphorus uptake by Scenedesmus quadricauda in phosphorus-rich environment after phosphorus deficiency stress[J]. Environmental Science Research, 2010,23(4):420-425.
|
[26] |
Yao B, Xi B, Hu C, et al. A model and experimental study of phosphateuptake kinetics in algae:considering surface adsorption and P-stress[J]. Journal of Environmental Sciences, 2011,23(2):189-198.
|
[27] |
Fu F X, Zhang Y, Leblanc K, et al. The biological and biogeochemical consequences of phosphate scavenging onto phytoplankton cell surfaces[J]. Limnology and Oceanography, 2005,50(5):1459-1472.
|
[28] |
周军,魏群,李晓伟,等.藻类膜对磷的吸附/吸收行为研究[J]. 环境工程学报, 2016,10(3):1133-1137. Zhou Jun, Wei Qun, Li Xiaowei, et al. Study on Phosphorus Adsorption/Absorption Behavior of Algae Membrane[J]. Journal of Environmental Engineering, 2016,10(3):1133-1137.
|
[29] |
Saxton M A, Arnold R J, Bourbonniere R A, et al. Plasticity of total and intracellular phosphorus quotas in Microcystis aeruginosa cultures and Lake Erie algal assemblages[J]. Frontiers in Microbiology, 2012, 3:3.
|
[30] |
Parsons T R, Maita Y, Laili C M. A manual of chemical and biological methods for seawater analysis[Z]. Pergamon Press, 1984.
|
[31] |
Landry M R, Hassett R P. Estimating the grazing impact of marine micro-zooplankton[J]. Marine Biology, 1982,67(3):283-288.
|
[32] |
Tovar-Sanchez A, Sañudo-Wilhelmy S A, Garcia-Vargas M, et al. A trace metal clean reagent to remove surface-bound iron from marine phytoplankton[J]. Marine Chemistry, 2003,82(1/2):91-99.
|
[33] |
吕颂辉,李英.我国东海4种赤潮藻的细胞氮磷营养储存能力对比[J]. 过程工程学报, 2006,(3):439-444. Lv S H, Li Y. Comparison of the cell nitrogen and phosphorus storage capacity of four red tide algae in the East China Sea[J]. Journal of Process Engineering, 2006,(3):439-444.
|
[34] |
王宗灵,李瑞香,朱明远,等.半连续培养下东海原甲藻和中肋骨条藻种群生长过程与种间竞争研究[J]. 海洋科学进展, 2006,(4):495-503. Wang Z L, Li R X, Zhu M Y, et al. Study on the population growth and interspecific competition of Prorocentrum Donghai and Skeletonema costatum in semi-continuous culture[J]. Advances in marine science, 2006,(4):495-503.
|
[35] |
Ou, L J, Wang, D, Huang, B Q, et al.Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters[J]. Journal of Plankton Research, 2008,30(9):1007-1017.
|
[36] |
Zhu M Y, Xu Z J, Li R X, et al. Interspecies competition for nutrients between Prorocentrum donghaiense Lu and Skeletonema costatum (Grev.) Cleve in mesocosm experiments[J]. Acta Oceanologica Sinica, 2009,28(1):72-82.
|
[37] |
欧林坚.典型赤潮藻对磷的生态生理响应[D]. 上海:厦门大学, 2006. Ou Linjian. Ecophysiological response of typical red tide algae to phosphorus[D]. Shanghai:Xiamen University, 2006.
|
[38] |
汪翔,应轲臻,宋俊廷,等.五种典型藻类对C,N,P吸收动力学分析及种间竞争模拟[J]. 现代生物医学进展, 2018,18(6):1001-1007. Wang X, Ying K Z, Song J T, et al. Kinetic analysis of C, N, P uptake by five typical algaes and Simulation of interspecific competition[J]. Advances in modern biomedicine, 2018,18(6):1001-1007.
|
[39] |
曹洁茹,桓清柳,吴霓,等.光照、温度和氮磷限制对6种典型鱼毒性藻类生长及产毒的影响[J]. 海洋环境科学, 2015,(3):321-329. Cao J R, Huan Q L, Wu N, et al. Effects of light, temperature and nitrogen and phosphorus restrictions on the growth and toxicity of six typical fish toxic algae[J]. Marine Environmental Science, 2015,(3):321-329.
|
[40] |
Grover J P. Non-steady state dynamics of algal population growth:experiments with two chlorophytes[J]. Journal of Phycology, 1991, 27(1):70-79.
|
[41] |
张胜花,葛芳杰, 王红强, 等. 不同氮磷营养条件下铜绿微囊藻(Microcystis aeruginosa)对正磷酸盐的蓄积效果[J]. 长江流域资源与环境, 2008,17(6):909-914. Zhang S H, Ge F J, Wang H Q, et al. Accumulation effect of Microcystis aeruginosa on orthophosphate under different nitrogen and phosphorus nutrition conditions[J]. Resources and Environment of Yangtze River Basin, 2008,17(6):909-914.
|
[42] |
EixlerS, Selig U, Karsten U. Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms[J]. Hydrobiologia, 2005,533(1-3):135-143.
|
[43] |
Scanlan D J, Mann N H, Carr N G. The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli.[J]. Molecular Microbiology, 1993,10(1):181-91.
|
[44] |
Ducobu H, Huisman J, JonkerR R, et al. Competition between a prochlorophyte and a cyanobacterium under various phosphorus regimes:comparison with the Droop model[J]. Journal of Phycology, 1998,34(3):467-476.
|
[45] |
Latasa M, Berdalet E. Effect of nitrogen or phosphorus starvation on pigment composition of cultured Heterocapsa sp.[J]. Journal of Plankton Research, 1994,16(1):83-94.
|
[46] |
Morel F M M. Kinetics of uptake and growth in phytoplankton[J]. Journal of Phycology, 1987,23(1):137-150.
|
[47] |
Falkowski, Paul G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature (London), 1997,387(6630):272-275.
|
[48] |
周钦.甲藻细胞磷库变化特征及赤潮生消周期内浮游生物群落结构变化研究[D]. 温州:温州大学, 2017. Zhou Qin. Characteristics of phosphorus pool changes in dinoflagellate cells and changes in plankton community structure during the red tide cycle[D]. Wenzhou:Wenzhou University, 2017.
|
[49] |
Burkhardt S, Riebesell U. CO2 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum[J]. Marine Ecology Progress Series, 1997,155:67-76.
|
[50] |
Pan S J, Shen Z L, Liu W P, et al. Nutrient compositions of cultured Skeletonema costatum, Chaetoceroscurvisetus, and Thalassiosira nordenskiöldii[J]. Chinese Journal of Oceanology and Limnology, 2010,28(6):1131-1138.
|
[51] |
Heldal M, Scanlan D J, Norland S, et al. Elemental composition of single cells of various strains of marine prochlorococcus and synechococcus using X-ray microanalysis[J]. Limnology and Oceanography, 2003,48(5):1732-174.
|
|
|
|