|
|
Effects of environmental exposure to triclocarban on the neurobehavior of zebrafish (Danio rerio) |
ZHAO Chen-xi, WANG Yang, QIAN Qiu-hui, YAN Jin, XIAO Ao, WANG Xue-dong, WANG Hui-li |
The School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China |
|
|
Abstract To evaluate adverse effects of triclocarban (TCC) on vertebrate neurobehavior and their mechanisms, we explored the larval neurodevelopmental toxicity under acute exposure and the adult nervous behavior under chronic exposure by employing zebrafish (Danio rerio) as the model vertebrate. The results show that the TCC acute exposure at the sublethal dose resulted in a decrease in both the autonomous movement activity and the sensitivity to sound and light stimulation of embryonic and larval zebrafish. As indicated by Acridine orange apoptotic staining that TCC induced excessive cell apoptosis in the larval head, kidney, brain and eyes. A series of malformation symptoms were observed with scanning electron microscopy, such as deformed lateral line nerve muzzle, inhibited development, reduced number of hair cell clusters and disordered arrangement. The group of adult zebrafish under the long-term TCC-exposure were observed to suffer from excessive anxiety and panic, decreased risk aversion and vigilance, as well as autism and reluctance to social activity. Overall, TCC exposure can significantly affect zebrafish memory, learning ability and cognitive function.
|
Received: 18 June 2021
|
|
|
|
|
[1] |
陈敏. 三氯生与三氯卡班的研究现状与展望[J]. 云南化工, 2020, 47(5): 1-3. Chen M. Research status and prospects of triclosan and triclocarban [J]. Yunnan Chemical Technology, 2020, 47(5): 1-3.
|
[2] |
王亚利. 三氯卡班在污水—污泥系统转化及其对污水—污泥系统的影响[D]. 长沙: 湖南大学, 2019. Wang Y L. Transformation of triclocarban in sewage-sludge system and its influence on sewage-sludge system [D]. Changsha: Hunan University, 2019.
|
[3] |
Yun H, Liang B, Kong D Y, et al. Fate, risk and removal of triclocarban: A critical review [J]. Journal of Hazardous Materials, 2020, 387: 121944.
|
[4] |
Halden R U, Paull D H. Co-occurrence of triclocarban and triclosan in U.S. water resources [J]. Environmental Science & Technology, 2005, 39(16): 6335-6336.
|
[5] |
张松. 黄河流域典型药物和个人护理品的污染特征与生态风险[D]. 哈尔滨: 哈尔滨工业大学, 2020. Zhang S. Pollution characteristics and ecological risks of typical medicines and personal care products in the Yellow River Basin [D]. Harbin: Harbin Institute of Technology, 2020.
|
[6] |
Iacopetta D, Catalano A, Ceramella J, et al. The different facets of triclocarban: A review [J]. Molecules, 2021, 26(9): 2811.
|
[7] |
董满园. 三氯卡班毒性效应的代谢分子机制研究[D]. 武汉: 中国科学院大学(中国科学院武汉物理与数学研究所), 2020. Dong M Y. Study on the metabolic molecular mechanism of the toxic effects of triclocarban [D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics), 2020.
|
[8] |
周艳君, 施阳. 三氯生和三氯卡班的毒性研究进展[J]. 安徽医科大学学报, 2017, 52(1): 147-151. Zhou Y J, Shi Y. Research progress on the toxicity of triclosan and triclocarban [J]. Acta Universitatis Medicinalis Anhui, 2017, 52(1): 147-151.
|
[9] |
孙静. 环境介质中三氯生和三氯卡班的分析研究[D]. 济南: 山东轻工业学院, 2011. Sun J. Analysis of triclosan and triclocarban in environmental media [D]. Jinan: Shandong Institute of Light Industry, 2011.
|
[10] |
李林朋. 三氯生和三氯卡班的生态与健康毒性初步研究[D]. 北京: 中国科学院大学, 2011. Li L P. Preliminary study on the ecological and health toxicity of triclosan and triclocarban [D]. Beijing: University of Chinese Academy of Sciences, 2011.
|
[11] |
Junior S, Vallerie Q, Araujo G, et al. Triclocarban affects earthworms during long-term exposure: Behavior, cytotoxicity, oxidative stress and genotoxicity assessments [J]. Environmental Pollution, 2020, 267: 115570.
|
[12] |
刘心建. 国内洗涤剂用杀菌剂的应用现状和前景展望[J]. 日用化学品科学, 2017, 40(5): 35-39. Liu X J. The application status and prospects of domestic detergent fungicides[J]. Detergent & Cosmetics, 2017, 40(5): 35-39.
|
[13] |
纪春. 三氯卡班的毒理研究及其降解菌的分离鉴定[D]. 太原: 山西大学, 2011. Ji C. Toxicology study of triclocarban and isolation and identification of degrading bacteria [D]. Taiyuan: Shanxi University, 2011.
|
[14] |
张玉彬. 渤海湾近岸海域三氯生和三氯卡班的污染特征分析及生态风险评价[D]. 天津: 天津大学, 2018. Zhang Y B. Pollution characteristics and ecological risk assessment of triclosan and triclocarban in the coastal waters of Bohai Bay [D]. Tianjin: Tianjin University, 2018.
|
[15] |
Ding Z M, Muhammad J A, Meng F, et al. Triclocarban exposure affects mouse oocyte invitro maturation through inducing mitochondrial dysfunction and oxidative stress [J]. Environmental Pollution, 2020, 262: 114271.
|
[16] |
杨峰, 王京真, 刘文华. 三氯卡班可以影响肾小管上皮细胞的屏障功能[J]. 生态毒理学报, 2017, 12(2): 177-181. Yang F, Wang J Z, Liu W H. Triclocarban can affect the barrier function of renal tubular epithelial cells [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 177-181.
|
[17] |
Xu J Q, Qian Q H, Xia M, et al. Trichlorocarban induces developmental and immune toxicity to zebrafish (Danio rerio) by targeting TLR4/MyD88/NF-κB signaling pathway [J]. Environmental Pollution, 2021, 273: 116479.
|
[18] |
Kajta M, Rzemieniec J, Wnuk A, et al. Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes [J]. Science of the Total Environment, 2020, 701: 134818.
|
[19] |
Chen J G, Ahn K C, Gee N A, et al. Triclocarban enhances testosterone action: A new type of endocrine disruptor [J]. Endocrinology, 2008, 149: 1173-1179.
|
[20] |
李林朋, 马慧敏, 胡俊杰, 等. 三氯生和三氯卡班对人体肝细胞DNA损伤的研究[J]. 生态环境学报, 2010, 19(12): 2897-2901. Li L P, Ma H M, Hu J J, et al. Study of triclosan and triclocarban on DNA damage of human liver cells [J]. Ecology and Environment, 2010, 19(12): 2897-2901.
|
[21] |
李倩倩, 李光德, 闫晓彤, 等. 三氯卡班对蚯蚓的氧化胁迫及DNA损伤[J]. 生态毒理学报, 2020, 15(6): 263-270. Li Q Q, Li G D, Yan X T, et al. Oxidative stress and DNA damage of triclocarban on earthworms [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 263-270.
|
[22] |
Xia M, Wang X D, Xu J Q, et al. Tris (1-chloro-2-propyl) phosphate exposure to zebrafish causes neurodevelopmental toxicity and abnormal locomotor behavior [J]. Science of the Total Environment, 2020, 758: 143694.
|
[23] |
Wang S Q, Qiu J B, Zhao M Y, et al. Accumulation and distribution of neurotoxin BMAA in aquatic animals and effect on the behavior of zebrafish in a T-maze test [J]. Toxicon, 2020, 173: 39-47.
|
[24] |
Stewart A, Wu N, Cachat J, et al. Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models [J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 35(6): 1421-1431.
|
[25] |
Cachat J, Stewart A, Grossman L, et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish [J]. Nature Protocols, 2010, 5(11): 1786-1799.
|
[26] |
Wang X D, Zheng Y S, Zhang Y N, et al. Effects of β-diketone antibiotic mixtures on behavior of zebrafish (Danio rerio) [J]. Chemosphere, 2016, 144: 2195-2205.
|
[27] |
Liu J F, Sun L M, Zhang H Q, et al. Response mechanisms to joint exposure of triclosan and its chlorinated derivatives on zebrafish (Danio rerio) behavior [J]. Chemosphere, 2018, 193: 820-832.
|
[28] |
王倩倩, 王永花, 汪贝贝, 等. 双酚F和双酚S联合暴露下的斑马鱼富集及神经毒性[J]. 中国环境科学, 2020, 40(2): 865-873. Wang Q Q, Wang Y H, Wang B B, et al. Enrichment and neurotoxicity of zebrafish under combined exposure of bisphenol F and bisphenol S [J]. China Environmental Science, 2020, 40(2): 865-873.
|
[29] |
贺永健, 刘瑞菁, 刘焕, 等. 氨基脲诱导的大鼠神经行为毒性及其生化机制[J]. 中国环境科学, 2018, 38(12): 4713-4719. He Y J, Liu R J, Liu H, et al. Semicarbazide-induced neurobehavioral toxicity in rats and its biochemical mechanism [J]. China Environmental Science, 2018, 38(12): 4713-4719.
|
[30] |
Dong G, Li X, Han G X, et al. Zebrafish neuro-behavioral profiles altered by acesulfame (ACE) within the range of "no observed effect concentrations (NOECs)"[J]. Chemosphere, 2020, 243: 125431.
|
[31] |
Thawkar B S, Kaur G. Zebrafish as a promising tool for modeling neurotoxin-induced alzheimer's disease [J]. Neurotoxicity Research, 2021, 39: 949-965.
|
[32] |
Sarasamma S, Audira G, Juniardi S, et al. Zinc chloride exposure inhibits brain acetylcholine levels, produces neurotoxic signatures, and diminishes memory and motor activities in adult zebrafish [J]. International Journal of Molecular Sciences, 2018, 19: 3195.
|
|
|
|