|
|
Advances in modification and application of titanium substrate lead dioxide anode |
SHEN Yan-ting1, LI Yao1, WU Xin-yi1, LIANG Jun-man2, ZHANG Yi-xin1, WANG He-ming1 |
1. State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China; 2. Beijing Diliweiye Technology Development Co., Ltd., Beijing 100085, China |
|
|
Abstract This review summarizes the modification methods of the base layer, intermediate layer and active layer of titanium substrate lead dioxide (Ti/PbO2) anode, analyzes the enhancement of electrode performance by different modification methods, enumerates the engineering applications of modified anode on wastewater treatment, and finally views the prospects of the modified anodes and their treatment on pollutants.
|
Received: 28 June 2023
|
|
|
|
|
[1] 徐浩,乔丹,许志成,等.电催化氧化技术在有机废水处理中的应用[J]. 工业水处理, 2021,41(3):1-9. Xu H, Qiao D, Xu Z C, et al. Application of electro-catalytic oxidation technology in organic wastewater treatment [J]. Industrial Water Treatment, 2021,41(3):1-9. [2] 曾志文,杜丛,胡术刚,等.钛基体二氧化铅电极改性研究进展[J]. 电镀与精饰, 2021,43(8):48-53. Zeng Z W, Du C, Hu S G, et al. Advances in research on titanium substrate lead dioxide electrode [J]. Plating and Finishing, 2021,43(8):48-53. [3] 肖羽堂,陈苑媚,王冠平,等.难降解废水电催化处理研究进展[J]. 工业水处理, 2020,40(6):1-6. Xiao Y T, Chen Y M, Wang G P, et al. Advances in electrocatalytic treatment of refractory wastewater [J]. Industrial Water Treatment, 2020,40(6):1-6. [4] Park H, Mameda N, Choo K H. Catalytic metal oxide nanopowder composite Ti mesh for electrochemical oxidation of 1,4-dioxane and dyes [J]. Chemical Engineering Journal, 2018,345:233-241. [5] Zhan W, Du Y, Lan J, et al. Electrochemical degradation of indigo carmine by low voltage pulse electrolysis [J]. Journal of Molecular Liquids, 2021,348:118006. [6] Song Y, Liu J, Ge F, et al. Influence of Nd-doping on the degradation performance of Ti/Sb-SnO2electrode [J]. Journal of Environmental Chemical Engineering, 2021,9:105409. [7] Wang Q, Tu S, Wang W, et al. Fabrication of In2O3doped PbO2anode and its application for electrochemical degradation of norfloxacin in aqueous solutions [J]. Journal of Environmental Chemical Engineering, 2021,9(6):106462. [8] Hu X, Dong H, Zhang Y, et al. Mechanism of N,N-dimethylformamide electrochemical oxidation using a Ti/RuO2-IrO2electrode[J]. RSC Advances, 2021,11(13):7205-7213. [9] Zhang C, Liu J, Chen B. Effect of Ce(NO3)4on the electrochemical properties of Ti/PbO2-TiO2-Ce(NO3)4electrode for zinc electrowinning [J]. Applied Physics A, 2019,125(2):150. [10] Fu X, Han Y, Xu H, et al. Electrochemical study of a novel high-efficiency PbO2 anode based on a cerium-graphene oxide co-doping strategy:Electrodeposition mechanism, parameter optimization, and degradation pathways [J]. Journal of Hazardous Materials, 2022, 422:126890. [11] Shen Y, Li Y, He Y, et al. Preparation of high performance superhydrophobic PVDF-PbO2-ZrO2 composite electrode and its application in the degradation of paracetamol and industrial oily wastewater [J]. Journal of Electroanalytical Chemistry, 2022,911:116231. [12] Chen Y, Liao D, Lin Y, et al. Electrochemical degradation performance and mechanism of dibutyl phthalate with hydrophobic PbO2 electrode [J]. Chemosphere, 2022,288:132638. [13] Dong H, Fu Y, Wang P, et al. Degradation of chloramphenicol by Ti/PbO2-La anodes and alteration in bacterial community and antibiotics resistance genes [J]. Environmental Pollution, 2022,301:119031. [14] Chen S, Chen J, Xing Y, et al. Sonoelectrochemical oxidation of aged landfill leachate with high-efficiency Ti/PANI/PDMS-Ce-PbO2anode [J]. Journal of Environmental Chemical Engineering, 2022,10(3):107499. [15] 赵媛媛,王德军,赵朝成.电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019,33(7):1125-1132. Zhao Y Y, Wang D J, Zhao C C. Progress in electrode materials for refractory wastewater treatment by electro-catalytic oxidation [J]. Materials Reports, 2019,33(7):1125-1132. [16] Rajeshwar K, Ibanez J G, Swain G M. Electrochemistry and the environment [J]. Journal of Applied Electrochemistry, 1994,24(11):1077-1091. [17] 武宇鹏,房慧,刘潇冉,等.电催化氧化处理脱硫废水COD的试验研究[J]. 工业水处理, 2023,43(5):122-128. Wu Y P, Fang H, Liu X R, et al. Experimental study on COD treatment of desulfurization wastewater by electrocatalytic oxidation [J]. Industrial Water Treatment, 2023,43(5):122-128. [18] 赵丹荻,何亚鹏,翟重渊,等.电催化氧化技术降解水中抗生素类污染物研究进展[J]. 环境化学, 2023,42(12):1-13. Zhao D D, He Y P, Zhai C Y, et al. Recent developments of electrochemical oxidation in degradation of emerging antibiotic pollutants [J]. Environmental Chemistry, 2023,42(12):1-13. [19] Santos G O S, Eguiluz K I B, Salazar-Banda G R, et al. Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes [J]. Journal of Electroanalytical Chemistry, 2020,857:113756. [20] Shin Y U, Yoo H Y, Ahn Y-Y, et al. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode:Multiple pathways for sulfate radical generation [J]. Applied Catalysis B:Environmental, 2019,254:156-165. [21] Divyapriya G, Nidheesh P V. Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications [J]. Current Opinion in Solid State and Materials Science, 2021,25(3):100921. [22] Sirtori C, Agüera A, Carra I, et al. Identification and monitoring of thiabendazole transformation products in water during Fenton degradation by LC-QTOF-MS [J]. Analytical and Bioanalytical Chemistry, 2014,406(22):5323-5337. [23] Zhou Q, Liu D, Yuan G, et al. Efficient degradation of phenolic wastewaters by a novel Ti/PbO2-Cr-PEDOT electrode with enhanced electrocatalytic activity and chemical stability [J]. Separation and Purification Technology, 2022,281:119735. [24] 唐志强,石雨,张亮,等.不同基底材料复合电极对热再生氨电池产电性能的影响[J]. 化工学报, 2021,72(3):1667-1674. Tang Z Q, Shi Y, Zhang L, et al. Effects of composite electrodes with different substrate materials on electricity generation of thermal regenerative ammonia-based batteries [J]. CIESC Journal, 2021,72(3):1667-1674. [25] Guo H, Hu W, Xu Z, et al. How to improve lead dioxide anodes performance in organic wastewater treatment:Review and prospect [J]. Process Safety and Environmental Protection, 2022,164:189-207. [26] Devilliers D, Mahé E. Modified titanium electrodes:Application to Ti/TiO2/PbO2 dimensionally stable anodes [J]. Electrochimica Acta, 2010,55(27):8207-8214. [27] He Y, Wang X, Huang W, et al. Hydrophobic networked PbO2 electrode for electrochemical oxidation of paracetamol drug and degradation mechanism kinetics [J]. Chemosphere, 2018,193:89-99. [28] Sui X, Duan X, Xu F, et al. Fabrication of three-dimensional networked PbO2anode for electrochemical oxidation of organic pollutants in aqueous solution [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019,100:74-84. [29] 王建忠,敖庆波,荆鹏,等.多孔钛的制备及应用[J]. 稀有金属材料与工程, 2022,51(5):1907-1918. Wang J Z, Ao Q B, Jing P, et al. Preparation and application of porous titanium [J]. Rare Metal Materials and Engineering, 2022,51(5):1907-1918. [30] Xing J, Chen D, Zhao W, et al. Preparation and characterization of a novel porous Ti/SnO2-Sb2O3-CNT/PbO2 electrode for the anodic oxidation of phenol wastewater [J]. RSC Advances, 2015,5(66):53504-53513. [31] Zhao W, Xing J, Chen D, et al. Study on the performance of an improved Ti/SnO2-Sb2O3/PbO2 based on porous titanium substrate compared with planar titanium substrate [J]. RSC Advances, 2015, 5(34):26530-26539. [32] Zhang W, Lin H, Kong H, et al. Preparation and characterization of lead dioxide electrode with three-dimensional porous titanium substrate for electrochemical energy storage [J]. Electrochimica Acta, 2014,139:209-216. [33] Zhang Z J, Zeng Q Y, Chou S L, et al. Tuning three-dimensional TiO2nanotube electrode to achieve high utilization of Ti substrate for lithium storage [J]. Electrochimica Acta, 2014,133:570-577. [34] Zhang Z, Liu J, Ai H, et al. Construction of the multi-layer TiO2-NTs/Sb-SnO2/PbO2 electrode for the highly efficient and selective oxidation of ammonia in aqueous solution:Characterization, performance and mechanism [J]. Journal of Environmental Chemical Engineering, 2023,11(3):109834. [35] Zhou X, Liu S, Yu H, et al. Electrochemical oxidation of pyrrole, pyrazole and tetrazole using a TiO2 nanotubes based SnO2-Sb/3D highly ordered macro-porous PbO2 electrode [J]. Journal of Electroanalytical Chemistry, 2018,826:181-190. [36] Gui L, Chen Z, Chen B, et al. Preparation and characterization of ZnO/PEG-Co(II)-PbO2 nanocomposite electrode and an investigation of the electrocatalytic degradation of phenol [J]. Journal of Hazardous Materials, 2020,399:123018. [37] 王鸿辉,马明洁,冯婕,等.钕掺杂二氧化铅复合阳极的电化学性能研究[J]. 电化学, 2018,24(4):367-374. Wang H H, Ma M J, Feng J, et al. Electrochemical performances of neodymium doped lead dioxide composite anode [J]. Journal of Electrochemistry, 2018,24(4):367-374. [38] 唐长斌,李晨光,于丽花,等.铝掺杂改性钛基PbO2电极性能研究[J]. 稀有金属材料与工程, 2019,48(6):1909-1915. Tang C B, Li C G, Yu L H, et al. Properties of Al-doped titanium Based PbO2 electrodes [J]. Rare Metal Materials and Engineering, 2019,48(6):1909-1915. [39] Chen Z, Du Y, Yang G, et al. Electrochemical degradation of the antibiotic ceftazidime by La doped modified PbO2 electrode:Catalytic conditions and degradation pathway [J]. Journal of Electroanalytical Chemistry, 2023,943:117620. [40] Ni Y, Yue W, Liu F, et al. Efficient electrochemical oxidation of cephalosporin antibiotics by a highly active cerium doped PbO2 anode:Parameters optimization, kinetics and degradation pathways [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023,666:131318. [41] Yao Y, Teng G, Yang Y, et al. Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes:Electrode characterization, influencing factors and degradation pathways [J]. Separation and Purification Technology, 2019,211:456-466. [42] Sun Y, Zhang C, Rong H, et al. Electrochemical Ni-EDTA degradation and Ni removal from electroless plating wastewaters using an innovative Ni-doped PbO2 anode:Optimization and mechanism [J]. Journal of Hazardous Materials, 2022,424:127655. [43] Wang K, Xing X, Liu W, et al. Fabrication of a novel PbO2 electrode with rare earth elements doping for p-nitrophenol degradation [J]. Journal of Environmental Chemical Engineering, 2023,11(2):109513. [44] Feng D, Shang Z, Xu P, et al. Electrochemical degradation of hydrolyzed polyacrylamide by a novel La-In co-doped PbO2 electrode:Electrode characterization, influencing factors and degradation pathway [J]. Journal of Electroanalytical Chemistry, 2022,906:116017. [45] Xu M, Mao Y, Song W, et al. Preparation and characterization of Fe-Ce co-doped Ti/TiO2NTs/PbO2 nanocomposite electrodes for efficient electrocatalytic degradation of organic pollutants [J]. Journal of Electroanalytical Chemistry, 2018,823:193-202. [46] Chen S, Li J, Liu L, et al. Fabrication of Co/Pr co-doped Ti/PbO2 anode for efficiently electrocatalytic degradation of β-naphthoxyacetic acid [J]. Chemosphere, 2020,256:127139. [47] Chen S, He P, Wang X, et al. Co/Sm-modified Ti/PbO2 anode for atrazine degradation:Effective electrocatalytic performance and degradation mechanism [J]. Chemosphere, 2021,268:128799. [48] Gao G, Zhang X, Wang P, et al. Electrochemical degradation of doxycycline hydrochloride on Bi/Ce co-doped Ti/PbO2 anodes:Efficiency and mechanism [J]. Journal of Environmental Chemical Engineering, 2022,10(5):108430. [49] Dong H, Hu X, Zhang Y, et al. Co/La modified Ti/PbO2 anodes for chloramphenicol degradation:Catalytic performance and reaction mechanism [J]. Chemosphere, 2021,285:131568. [50] Chen S, Chen B M, Wang S C, et al. Ag doping to boost the electrochemical performance and corrosion resistance of Ti/Sn-Sb-RuOx/α-PbO2/β-PbO2 electrode in zinc electrowinning [J]. Journal of Alloys and Compounds, 2020,815:152551. [51] Yu B, Xu R, Wang X, et al. Electrodeposition of MnO2-doped Pb-0.6%Sb/α-PbO2/β-PbO2 novel composite energy-saving anode for zinc electrowinning [J]. Journal of Energy Storage, 2023,61:106264. [52] Shamsi F, Rezaei M. Anodic electrodeposition of PbO2 on ATO/Ti with simultaneous doping of F, Co, and Fe as super-hydrophilic, highly active, and durable electrocatalyst for oxygen evolution reaction in acidic solution [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023,670:131608. [53] 崔文蓉,陈阵,余强,等.纳米CeO2颗粒改性钛基二氧化铅复合电极材料的析氧电催化活性研究[J]. 化学研究与应用, 2017,29(9):1380-1386. Cui W R, Chen Z, Yu Q, et al. The electrochemical performance study of CeO2 particles modified titanium base lead dioxide composite electrode materials [J]. Chemical Research and Application, 2017, 29(9):1380-1386. [54] 丹媛媛,张丽,陈景晶,等.Ti/PbO2+Co3O4复合电极材料在混合超级电容器中的赝电容性能研究[J]. 江苏科技大学学报(自然科学版), 2015,29(6):530-535. Dan Y Y, Zhang L, Chen J J, et al. Pseudocapacitive behavior of Ti/PbO2+Co3O4 composite in hybrid supercapacitors [J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2015,29(6):530-535. [55] Yu S, Zhang R, Dang Y, et al. Electrochemical activation of peroxymonosulfate at Ti/La2O3-PbO2 anode to enhance the degradation of typical antibiotic wastewater [J]. Separation and Purification Technology, 2022,294:121164. [56] Wang X, Wang J, Jiang W, et al. MnCo2O4 decorating porous PbO2 composite with enhanced activity and durability for acidic water oxidation [J]. Fuel, 2023,338:127344. [57] 梁琳琳,张达光,慕晓炜,等.Sb-SnO2颗粒对钛基体PbO2电极的掺杂改性[J]. 电镀与涂饰, 2020,39(21):1495-1500. Liang L L, Zhang D G, Mu X W, et al. Modification of PbO2 electrode on titanium by doping Sb-SnO2 particles [J]. Electroplating & Finishing, 2020,39(21):1495-1500. [58] Li Y, Jiang L, Li J, et al. Novel phosphorus-doped lead oxide electrode for oxygen evolution reaction [J]. RSC Advances, 2014,4(11):5339-5342. [59] Souri Z, Ansari A, Nematollahi D, et al. Electrocatalytic degradation of dibenzoazepine drugs by fluorine doped β-PbO2 electrode:New insight into the electrochemical oxidation and mineralization mechanisms [J]. Journal of Electroanalytical Chemistry, 2020,862:114037. [60] Fazlinezhad S, Jafarzadeh K, Shooshtari Gugtapeh H, et al. Characterization and electrochemical properties of stable Ni2+ and F- co-doped PbO2 coating on titanium substrate [J]. Journal of Electroanalytical Chemistry, 2022,909:116145. [61] Chen X, Liu Y, Wang B, et al. Understanding role of microstructures of nanomaterials in electrochemiluminescence properties and their applications [J]. TrAC Trends in Analytical Chemistry, 2023,162:117030. [62] Man S, Bao H, Yang H, et al. Preparation and characterization of Nano-SiC doped PbO2 electrode for degradation of toluene diamine [J]. Journal of Alloys and Compounds, 2021,859:157884. [63] 张博文,汤莎莎,宋爽.碳纳米点掺杂二氧化铅电极电催化降解2,4-D [J]. 水处理技术, 2018,44(7):21-25. Zhang B W, Tang S S, Song S. Electrochemical degradation of 2,4-D with carbon nanodots doped lead dioxide electrode [J]. Technology of Water Treatment, 2018,44(7):21-25. [64] 陈元盛,李晓峰,任喜平.氯离子侵蚀下多壁碳纳米管掺量对混凝土耐久性能的影响[J]. 水力发电, 2023,49(7):101-106. Chen Y S, Li X F, Ren X P. Effect of multi-walled carbon nanotubes content on durability of concrete under chloride ion erosion [J]. Water Power, 2023,49(7):101-106. [65] 何易,陈阵,朱薇,等.多壁碳纳米管对钛基二氧化铅电极电化学性能的影响[J]. 材料保护, 2017,50(11):14-17,26. He Y, Chen Z, Zhu W, et al. Effect of multi-walled carbon nanotubes on electric performance of titanium-based lead dioxide electrodes [J]. Materials Protection, 2017,50(11):14-17,26. [66] Chen S, He P, Zhou P, et al. Development of a novel graphitic carbon nitride and multiwall carbon nanotube co-doped Ti/PbO2 anode for electrocatalytic degradation of acetaminophen [J]. Chemosphere, 2021,271:129830. [67] 贾冀辉,蔡杭,梁云峰,等.HPAM聚合物与离子型表面活性剂协同稳定CO2泡沫的分子模拟研究[J]. 石油科学通报, 2023,8(1):69-86. Jia J H, Cai H, Liang Y F, et al. Synergistic effect of hydrolyzed polyacrylamide and ionic surfactant to enhance the stability of CO2 foam:A molecular dynamics study [J]. Petroleum Science Bulletin, 2023,8(1):69-86. [68] 胡琪,陈阵,朱薇,等.有机添加剂对三维多孔二氧化铅阳极性能的影响[J]. 材料工程, 2023,51(3):166-173. Hu Q, Chen Z, Zhu W, et al. Effect of organic additives on the properties of three-dimensional porous lead dioxide anode [J]. Materials Engineering, 2023,51(3):166-173. [69] Velichenko A, Luk'yanenko T, Shmychkova O, et al. Electrosynthesis and catalytic activity of PbO2-fluorinated surfactant composites [J]. Journal of Chemical Technology & Biotechnology, 2020,95(12):3085-3092. [70] Li X, Xu H, Yan W. Effects of twelve sodium dodecyl sulfate (SDS) on electro-catalytic performance and stability of PbO2 electrode [J]. Journal of Alloys and Compounds, 2017,718:386-395. [71] Duan X, Xu F, Wang Y, et al. Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution [J]. Electrochimica Acta, 2018,282:662-671. [72] Li X, Xu H, Yan W. Fabrication and characterization of PbO2 electrode modified with polyvinylidene fluoride (PVDF) [J]. Applied Surface Science, 2016,389:278-286. [73] Lihua Y, Juanqin X, Lei W, et al. Preparation and Characterization of [Emim] BF4 Modified Lead Dioxide Electrodes [J]. Rare Metal Materials and Engineering, 2017,46(7):1833-1838. [74] 汪世川,陈步明,黄惠,等.锌电积用钛基掺聚苯胺热解碳氮SnO2-Sb2O3/PbO2电极[J]. 材料科学与工艺, 2018,26(6):89-96. Wang S C, Chen B M, Huang H, et al. Ti/PbO2 electrode doped with polyaniline pyrolyzed carbon-nitrogen in SnO2-Sb2O3 interlayer for zinc electrowinning [J]. Materials Science and Technology, 2018,26(6):89-96. [75] Tang C, Liu Z, Cui D, et al. Enhancing the stability and electrocatalytic activity of Ti-based PbO2 anodes by introduction of an arc-sprayed TiN interlayer [J]. Electrochimica Acta, 2021,399:139398. [76] Deng S, Dai Y, Situ Y, et al. Preparation of nanosheet-based spherical Ti/SnO2-Sb electrode by in-situ hydrothermal method and its performance in the degradation of methylene blue [J]. Electrochimica Acta, 2021,398:139335. [77] Ansari A, Nematollahi D. Convergent paired electrocatalytic degradation of p-dinitrobenzene by Ti/SnO2-Sb/β-PbO2 anode. A new insight into the electrochemical degradation mechanism [J]. Applied Catalysis B:Environmental, 2020,261:118226. [78] Rajasekhar B, Nambi I M, Govindarajan S K. Investigating the degradation of nC12to nC23alkanes and PAHs in petroleum-contaminated water by electrochemical advanced oxidation process using an inexpensive Ti/Sb-SnO2/PbO2 anode [J]. Chemical Engineering Journal, 2021,404:125268. [79] Wang Y, Chen M, Wang C, et al. Electrochemical degradation of methylisothiazolinone by using Ti/SnO2-Sb2O3/α, β-PbO2 electrode:Kinetics, energy efficiency, oxidation mechanism and degradation pathway [J]. Chemical Engineering Journal, 2019,374:626-636. [80] Barbari K, Delimi R, Benredjem Z, et al. Photocatalytically-assisted electrooxidation of herbicide fenuron using a new bifunctional electrode PbO2/SnO2-Sb2O3/Ti//Ti/TiO2 [J]. Chemosphere, 2018,203:1-10. [81] Tang Z, Zhou J, Qi L, et al. Preparation of Ti/Sb-SnO2-GO/PbO2 Electrode and Its Application in Electrochemical Oxidation Treatment of Ultralow-Concentration Residual Hydrazine in Water [J]. International Journal of Electrochemical Science, 2017,12:4465-4478. [82] Zhang R, Hua S, Dang Y, et al. Strategy for enhancing the electrocatalytic performance of Ti/β-PbO2 anode:Optimizing SnO2 intermediate layer by Cs doping and application for the efficient removal of mixed fluoroquinolones [J]. Journal of Alloys and Compounds, 2022,895:162528. [83] Chen B, Wang S, Liu J, et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning [J]. Corrosion Science, 2018,144:136-144. [84] Chen M, Pan S, Zhang C, et al. Electrochemical oxidation of reverse osmosis concentrates using enhanced TiO2-NTA/SnO2-Sb anodes with/without PbO2 layer [J]. Chemical Engineering Journal, 2020,399:125756. [85] Wei F, Liao D, Lin Y, et al. Electrochemical degradation of reverse osmosis concentrate (ROC) using the electrodeposited Ti/TiO2-NTs/PbO2 electrode [J]. Separation and Purification Technology, 2021, 258:118056. [86] Yang C, Shang S, Li X Y. Fabrication of sulfur-doped TiO2 nanotube array as a conductive interlayer of PbO2 anode for efficient electrochemical oxidation of organic pollutants [J]. Separation and Purification Technology, 2021,258:118035. [87] Yu L, Xue J, Zhang L, et al. Fabrication of a stable Ti/Pb-TiOxNWs/PbO2 anode and its application in benzoquinone degradation [J]. Electrochimica Acta, 2021,368:137532. [88] Wang J, Xu M, Liang X, et al. Development of a novel 2D Ni-MOF derived NiO@C nanosheet arrays modified Ti/TiO2NTs/PbO2 electrode for efficient electrochemical degradation of salicylic acid wastewater [J]. Separation Purification Technology, 2021,263:118368. [89] Chen Y, Li H, Liu W, et al. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode [J]. Chemosphere, 2014,113:48-55. [90] 唐长斌,郑超,于丽花,等.电镀镍中间层对钛基二氧化铅阳极性能的影响[J]. 稀有金属材料与工程, 2019,48(1):143-151. Tang C B, Zheng C, Yu L H, et al. Effect of electroplating nickel inter-layer on performance of ti-based lead dioxide electrodes [J]. Rare Metal Materials and Engineering, 2019,48(1):143-151. [91] Tang C, Cui D, Li Z, et al. Electrooxidation degradation of hydroxychloroquine in wastewater using a long-acting Ti-based PbO2anode with an arc-sprayed (Ti,Zr) N interlayer [J]. Chemosphere, 2023,335:139074. [92] 孙齐,韩严和,付晓璐.改性钛基PbO2电极的制备及其对COD的快速检测[J]. 电化学, 2021,27(5):558-569. Sun Q, Han Y H, Fu X L. Preparation of modified titanium based PbO2electrode and its rapid detection of COD [J]. Journal of Electrochemistry, 2021,27(5):558-569. [93] Dong G, Dong L, Lang K, et al. Insight into the high-efficient electrocatalytic elimination toward antibiotics via introducing FeTiO3 interlayer under Ce-PbO2 coating [J]. Journal of Environmental Chemical Engineering, 2022,10(5):108453. [94] Tang C B, Lu Y X, Wang F, et al. Influence of a MnO2-WC interlayer on the stability and electrocatalytic activity of titanium-based PbO2 anodes [J]. Electrochimica Acta, 2020,331:135381. [95] Man S, Luo D, Sun Q, et al. When MXene (Ti3C2Tx) meet Ti/PbO2:An improved electrocatalytic activity and stability [J]. Journal of Hazardous Materials, 2022,430:128440. [96] Xu M, Wang Z, Wang F, et al. Fabrication of cerium doped Ti/nano TiO2/PbO2 electrode with improved electrocatalytic activity and its application in organic degradation [J]. Electrochimica Acta, 2016,201:240-250. [97] 张志军,成鹏,谢智翔,等.改性钛基二氧化铅电极催化氧化降解水中四环素[J]. 工业水处理, 2023,43(3):71-79. Zhang Z J, Cheng P, Xie Z X, et al. Catalytic oxidation degradation of tetracycline in water by modified titanium-based lead dioxide electrode [J]. Industrial Water Treatment, 2023,43(3):71-79. [98] Duan P, Qian C, Wang X, et al. Fabrication and characterization of Ti/polyaniline-Co/PbO2-Co for efficient electrochemical degradation of cephalexin in secondary effluents [J]. Environmental Research, 2022,214:113842. [99] Ma X, He C, Yan Y, et al. Energy-efficient electrochemical degradation of ciprofloxacin by a Ti-foam/PbO2-GN composite electrode:Electrode characteristics, parameter optimization, and reaction mechanism [J]. Chemosphere, 2023,315:137739. [100] Liu Z, Qian W, Min C, et al. Electrocatalytic oxidation of gaseous toluene in an all-solid cell using a foam Ti/Sb-SnO2/β-PbO2 anode [J]. Journal of Environmental Sciences, 2022,134:77-85. [101] Zhang H W, Ling Z, Ma J Y, et al. Biodegradability enhancement of phenolic wastewater using hydrothermal pretreatment [J]. Bioresource Technology, 2022,367:128199. [102] Saravanan A, Kumar P S, Varjani S, et al. A review on algal-bacterial symbiotic system for effective treatment of wastewater [J]. Chemosphere, 2021,271:129540. [103] Bibi A, Bibi S, Abu-Dieyeh M, et al. Towards sustainable physiochemical and biological techniques for the remediation of phenol from wastewater:A review on current applications and removal mechanisms [J]. Journal of Cleaner Production, 2023,417:137810. [104] Feng R, Zhang Y, Yan C, et al. Preparation and characterization of optimized Ce and CTAB co-doped Blue-TiO2/PbO2 stable anode for phenol degradation [J]. Chemical Physics Letters, 2023,828:140736. [105] Wan C L, Zhao L F, Wu C Y, et al. Bi5+ doping improves the electrochemical properties of Ti/SnO2-Sb/PbO2 electrode and its electrocatalytic performance for phenol [J]. Journal of Cleaner Production, 2022,380:135005. [106] Li L, Zhu W, Li H, et al. Preparation of a novel Ti/TNAs/PbO2-PVDF-Er2O3 anode by Ti3+ self-doping TNAs and its electrocatalytic performance for hydroquinone degradation [J]. Journal of Environmental Chemical Engineering, 2023,11(5):110379. [107] Shuaishuai M, Ge X, Xu K, et al. Fabrication of a Ti/PbO2 electrode with Sb doped SnO2 nanoflowers as the middle layer for the degradation of methylene blue, norfloxacin and p-dihydroxybenzene [J]. Separation and Purification Technology, 2021,280:119816. [108] Xu M, Wang J, Liang X, et al. MOF-derived ZrO2-C nanoparticles modified PbO2 electrode for high-efficiency electrocatalytic degradation of nitrophenolic compounds in wastewater [J]. Separation and Purification Technology, 2023,318:123921. [109] 赵媛媛,刘文静,董培,等.聚苯胺中间层改性Ti/PbO2电极的制备及其降解性能[J]. 化工进展, 2019,38(12):5478-5486. Zhao Y Y, Liu W J, Dong P, et al. Fabrication of Ti/PbO2 electrodes with polyaniline interlayer for electrocatalytic oxidation of organic pollutants [J]. Chemical Industry and Engineering Progress, 2019, 38(12):5478-5486. [110] 岳文清,倪月,孙则朋,等.改性钛基PbO2电极对有机污染物的降解性能——以甲基橙和4-硝基苯酚为例[J]. 中国环境科学, 2022, 42(2):706-716. Yue W Q, Ni Y, Sun Z P, et al. Degradation of organic pollutants by modified titanium based PbO2 electrode:Taking methyl orange and 4-nitrophenol as examples [J]. China Environmental Science, 2022, 42(2):706-716. [111] Al-Tohamy R, Ali S S, Li F, et al. A critical review on the treatment of dye-containing wastewater:Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety [J]. Ecotoxicology and Environmental Safety, 2022,231:113160. [112] Nidheesh P V, Divyapriya G, Ezzahra Titchou F, et al. Treatment of textile wastewater by sulfate radical based advanced oxidation processes [J]. Separation and Purification Technology, 2022,293:121115. [113] Bai X, Shi J, Zhang Z, et al. Efficient persulfate activation by photo-excited organic dyes:Mechanism and application for actual dyeing wastewater self-purification [J]. Journal of Cleaner Production, 2023,421:138375. [114] Wang X, Wang L, Wu D, et al. PbO2 materials for electrochemical environmental engineering:A review on synthesis and applications [J]. Science of The Total Environment, 2023,855:158880. [115] 于乃川,孙会杰,许志龙,等.Ce-PbO2电极的制备及对苯磺酰胺的电催化降解[J]. 电镀与精饰, 2023,45(6):32-37. Yu N C, Sun H J, Xu Z L, et al. Preparation of Ce-PbO2 electrode and its electrocatalytic degradation of benzsulfamide [J]. Plating and Finishing, 2023,45(6):32-37. [116] Zhou Y, Li Z, Hao C, et al. Electrocatalysis enhancement of α, β-PbO2 nanocrystals induced via rare earth Er(III) doping strategy:Principle, degradation application and electrocatalytic mechanism [J]. Electrochimica Acta, 2020,333:135535. [117] Zhang L, Wei F, Zhao Q, et al. Electrochemical degradation of bromophenol blue on porous PbO2-ZrO2 composite electrodes [J]. Research on Chemical Intermediates, 2020,46(2):1389-1404. [118] Zhang Y, He P, Jia L, et al. Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R [J]. Journal of Colloid and Interface Science, 2019,533:750-761. [119] Liu B, Ren B, Xia Y, et al. Electrochemical degradation of safranine T in aqueous solution by Ti/PbO2 electrodes [J]. Canadian Journal of Chemistry, 2019,98(1):7-14. [120] Ma X, Yan Y, Dai Q, et al. Energy-efficient pulse electrochemical oxidation of Acid Blue 9using a Ti/SnO2-Sb/α,β-Polytetrafluoroethylene-Fe-PbO2 electrode:Kinetics, mass transfer and mechanism [J]. Separation and Purification Technology, 2021,279:119775. [121] Wei Z, Kang X, Xu S, et al. Electrochemical oxidation of Rhodamine B with cerium and sodium dodecyl benzene sulfonate co-modified Ti/PbO2 electrodes:Preparation, characterization, optimization, application [J]. Chinese Journal of Chemical Engineering, 2021,32:191-202. [122] Dong G, Lang K, Gao Y, et al. A novel composite anode via immobilizing of Ce-doped PbO2 on CoTiO3 for efficiently electrocatalytic degradation of dye [J]. Journal of Colloid and Interface Science, 2022,608:2921-2931. [123] Yang H, Zu X, Lin J, et al. Direct and efficient conversion of antibiotic wastewater into electricity by redox flow fuel cell based on photothermal synergistic effect [J]. Applied Energy, 2023,348:121568. [124] Duan P, Qian C, Wang X, et al. Fabrication and characterization of Ti/polyaniline-Co/PbO2-Co for efficient electrochemical degradation of cephalexin in secondary effluents [J]. Environmental Research, 2022,214:113842. [125] Dai J, Feng H, Shi K, et al. Electrochemical degradation of antibiotic enoxacin using a novel PbO2 electrode with a graphene nanoplatelets inter-layer:Characteristics, efficiency and mechanism [J]. Chemosphere, 2022,307:135833. [126] Fernandes A, Santos D, Pacheco M J, et al. Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2-Sb2O4 and Si/BDD [J]. Applied Catalysis B:Environmental, 2014,148-149:288-294. [127] Li J, Li M, Li D, et al. Electrochemical pretreatment of coal gasification wastewater with Bi-doped PbO2 electrode:Preparation of anode, efficiency and mechanism [J]. Chemosphere, 2020,248:126021. [128] Yang X, Zou R, Huo F, et al. Preparation and characterization of Ti/SnO2-Sb2O3-Nb2O5/PbO2 thin film as electrode material for the degradation of phenol [J]. Journal of Hazardous Materials, 2009, 164(1):367-373. [129] Wang W, Duan X, Sui X, et al. Surface characterization and electrochemical properties of PbO2/SnO2 composite anodes for electrocatalytic oxidation of m-nitrophenol [J]. Electrochimica Acta, 2020,335:135649. [130] Rong H Y, Zhang C Y, Sun Y Y, et al. Electrochemical degradation of Ni-EDTA complexes in electroless plating wastewater using PbO2-Bi electrodes [J]. Chemical Engineering Journal, 2022,431:133230. [131] 孙广垠,陈美玲,张会宁,等.微生物法处理石化含油废水研究进展[J]. 水处理技术, 2023,49(8):1-7. Sun G Y, Chen M L, Zhang H N, et al. Review on biological treatment of petrochemical oily wastewater [J]. Technology of Water Treatment, 2023,49(8):1-7. [132] Lei Y, Hou J, Fang C, et al. Ultrasound-based advanced oxidation processes for landfill leachate treatment:Energy consumption, influences, mechanisms and perspectives [J]. Ecotoxicology and Environmental Safety, 2023,263:115366. [133] Singh H, Sonal S, Mishra B K. Understanding the toxicity effect and mineralization efficiency of in-situ electrogenerated chlorine dioxide for the treatment of priority pollutants of coking wastewater [J]. Ecotoxicology and Environmental Safety, 2021,211:111907. [134] 赵瑾,成玉,姜天翔,等.基于响应面法优化的异相芬顿处理电镀废水有机络合物[J]. 化学工业与工程, 2023,40(4):129-136. Zhao J, Cheng Y, Jiang T X, et al. Optimization of heterogeneous Fenton treatment of organic complexes in electroplating wastewater based on response surface methodology [J]. Chemical Industry and Engineering, 2023,40(4):129-136.
|
|
|
|