|
|
Characteristics of Zn flux in cultivated soil layer in karst and non-karst areas of Hengzhou, Guangxi |
YANG Ye-yu1,2,3, LI Cheng1,2, YANG Zhong-fang4, ZHANG Qi-zuan5, WANG Lei6, ZOU Sheng-zhang1,2, WEI Hua-zhou3,7, MO Jia-rong3,7 |
1. Guangxi Karst Resources and Environment Research Center of Engineering Technology, International Research Centre on Karst under the Auspices of UNESCO, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; 2. Pingguo Guangxi, Karst Ecosystem, National Observation and Research Station, Pingguo 531406, China; 3. Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Nanning 530028, China; 4. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; 5. Tianjin Center, China Geological Survey, Tianjin 300170, Chian; 6. Geology Team No. 4 of Guangxi Zhuang Autonomic Region, Nanning 530031, China; 7. Natural Resources Ecological Restoration Center of Guangxi Zhuang Autonomous Region, Nanning 530028, China |
|
|
Abstract A comparative study was conducted to analyze the import and export pathways, as well as the annual input and output flux density of Zn in cultivated soil, in both karst and non-karst areas of Hengzhou, Guangxi. The results showed that the content of Zn in soil in karst area was significantly higher than that in non-karst area under the influence of the parent material. The input of soil Zn in both karst and non-karst areas was significantly affected by human activities, with atmospheric deposition being the primary input pathway. The average annual input flux densities were 494.15 and 484.99g/(hm2·a) in karst and non-karst areas, respectively. The main output pathway was through harvesting, with the annual output flux densities being 490.63 and 580.12g/(hm2·a) in karst and non-karst areas, respectively. The annual output flux density in non-karst area was slightly higher due to the influence of Fe-Mn nodulation and irrigation water. Overall, the annual input flux showed Zn accumulation.
|
Received: 07 May 2024
|
|
|
|
|
[1] Wang Y Z, Yu T, Yang Z F, et al. Zinc concentration prediction in rice grain using back-propagation neural network based on soil properties and safe utilization of paddy soil: A large-scale field study in Guangxi, China [J]. The Science of the Total Environment, 2021,(798):149270. [2] Li W, Gou W X, Li W Q, et al. Environmental applications of metal stable isotopes: silver, mercury and zinc [J]. Environmental pollution, 2019,252:1344-1356. [3] 环境保护部,国土资源部.全国土壤污染状况调查公报[N]. 国土资源通讯, 2014-04-17. Ministry of Environmental Protection, Ministry of Natural Resources. Report on the national general survey of soil contamination [N]. National Land & Resources Information, 2014-04-17. [4] Chen H Y, Teng Y G, Lu S J, et al. Contamination features and health risk of soil heavy metals in China [J]. Science of the Total Environment, 2015,512-513:143-153. [5] Wen Y B, Li W, Yang Z F, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China [J]. Chemosphere, 2020,245:125620. [6] Little S H, Munson S, Prytulak J, et al. Cu and Zn isotope fractionation during extreme chemical weathering [J]. Geochimica et Cosmochimica Acta, 2019,263:85-107. [7] 王春,陈梓杰,王莹,等.黑色岩系地质高背景区土壤锌富集特征与环境活性[J]. 地球与环境, 2022,50(4):490-497. Wang C, Chen Z J, Wang Y, et al. Soil zinc enrichment characteristics and environmental activity in black rock series geological high background area [J]. Earth and Environment, 2022,50(4):490-497. [8] 李小方,曹建华,周玉婵,等.岩溶区与非岩溶区不同土地利用方式下土壤Zn元素形态分析[J]. 中国岩溶, 2006,(4):293-296. Li X F D, Cao J H, Zhou Y C, et al. Soil Zn morphologic analysis under different land use patterns in karst and non-karst areas [J]. Carsologica Sinica, 2006,(4):293-296. [9] 夏亚飞,齐猛,高庭,等.高强度自然和人为作用影响区土壤Zn的再分配机制:Zn稳定同位素证据[J]. 矿物岩石地球化学通报, 2022,41(5):945-955,1032. Xia Y F, Qi M, Gao T, et al. Redistribution processes of Zn in soils highly affected by combined natural and anthropogenic activities: evidence from stable Zn isotope [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022,41(5):945-955,1032. [10] 胡晓斌,杨轶男,李巧娥,等.某矿区居民混合金属暴露与早期肾功能损害相关性[J]. 中国环境科学, 2024,44(4):2357-2368. Hu X B, Yang Y N, Li Q E, et al. Correlation analysis of mixed metal exposure and early renal function impairment indicators in a mining area [J]. China Environmental Science, 2024,44(4):2357-2368. [11] 杨烨宇,李程,杨忠芳,等.广西贺州市典型矿区周边耕层土壤Cd通量特征[J]. 环境科学, 2023,45(3):1739-1748. Yang Y Y, Li C, Yang Z F, et al. Characteristics of Cd fluxe in topsoil around typical mining area in Hezhou, Guangxi [J]. Environmental Science, 2023,45(3):1739-1748. [12] Hou Q Y, Yang Z F, Yu T, et al. Impacts of parent material on distributions of potentially toxic elements in soils from Pearl River Delta in South China [J]. Scientific Reports, 2020,10,17394. [13] Liu X, Yu T, Yang Z F, et al. Transfer mechanism and bioaccumulation risk of potentially toxic elements in soil-rice systems comparing different soil parent materials [J]. Ecotoxicology and Environmental Safety, 2021,216,112214. [14] 卢维宏,刘娟,张乃明,等.设施菜地土壤重金属累积及影响因素研究[J]. 中国环境科学, 2022,42(6):2744-2753. Lu W H, Liu J, Zhang N M, et al. Study on the accumulation of heavy metals and influencing factors in the soil of facility vegetable fields [J]. China Environmental Science, 2022,42(6):2744-2753. [15] Yi K X, Fan W, Chen J Y, et al. Annual input and output fluxes of heavy metals to paddy fields in four types of contaminated areas in Hunan Province China [J]. Science of the Total Environment, 2018, 634:67-76. [16] Hou Q Y, Yang Z F, Ji J F, et al. Annual net input fluxes of heavy metals of the agroecosystem in the Yangtze River delta, China [J]. Journal of Geochemical Exploration, 2014,139:68-84. [17] GB 15618-2018土壤环境质量农用地土壤污染风险管控标准(试行) [S]. GB 15618-2018 Soil environmental quality - Risk control standard for soil contamination of agricultural land [S]. [18] 刘旭,顾秋蓓,杨琼,等.广西象州与横县碳酸盐岩分布区土壤中Cd形态分布特征及影响因素[J]. 现代地质, 2017,31(2):374-385. Liu X, Gu Q B, Yang Q, et al. Distribution and influencing factors of cadmium geochemical fractions of soils at carbonate covering area in Hengxian and Xiangzhou of Guangxi [J]. Geoscience, 2017,31(2): 374-385. [19] 吴含志,郑国东,陈彪,等.广西横县农耕地土壤主要重金属元素空间变异性特征及其来源识别[J]. 矿产与地质, 2021,35(5):966-971. Wu H Z, Zheng G D, Chen B, et al. Spatial variability and source identification of heavy metal elements in farmland soils in Hengxian County, Guangxi [J]. Mineral Resources and Geology, 2021,35(5): 966-971. [20] DZ/T 0295-2016土地质量地球化学评价规范[S]. DZ/T 0295-2016 Standard for geochemical evaluation of land quality [S]. [21] DZ/T 0289-2015区域地球化学评价规范[S]. DZ/T 0289-2015 Standard for regional geochemical evaluation [S]. [22] 姜宏裕.广西来宾-柳州黑色岩系分布区土壤重金属污染及有效性研究[D]. 北京:中国地质大学(北京), 2020. Jiang H Y. Pollution of heavy metals in soils and their availability of black shale distribution area in Liuzhou-Laibin, Guangxi [D]. Beijing: China University of Geosciences (Beijing), 2020. [23] 姜伟.北部湾周边地区农田土壤潜在有害元素生态地球化学评价[D]. 北京:中国地质大学(北京), 2015. Jiang W. Potential hazardous element geochemistry in agro-ecosystem of areas around Beibu Gulf [D]. Beijing: China University of Geosciences (Beijing), 2015. [24] 杨烨宇.广西贺州锡矿区土壤镉地球化学特征与土地安全利用[D]. 北京:中国地质大学(北京), 2021. Yang Y Y. Geochemical characteristics of soil Cd and zoning of land safety use in Hezhou tin mining area of Guangxi [D]. Beijing: China University of Geosciences (Beijing), 2021. [25] Li C, Zhang C S, Yu T, et al. Annual net input fluxes of cadmium in paddy soils in karst and non-karst areas of Guangxi, China [J]. Journal of Geochemical Exploration, 2022,241. [26] 文宇博.广西岩溶地质高背景地区土壤重金属的富集机制和生物有效性研究[D]. 南京:南京大学, 2020. Wen Y B. Enrichment mechanism and bioavailability of heavy metals in soils with high geochemical background in the karst region of Guangxi Province, China [D]. Nanjing: Nanjing University, 2020. [27] 刘方,朱健,杨鉴,等.区域土壤锌空间分布的异质性及制约因素分析[J]. 贵州大学学报(自然科学版), 2023,40(2):17-23. Liu F, Zhu J, Yang J, et al. Heterogeneity and restriction factors of spatial distribution of zinc in regional soil [J]. Journal of Guizhou University (Natural Sciences), 2023,40(2):17-23. [28] 王磊,卓小雄,李兆谊,等.广西凤山县典型土壤垂向剖面元素地球化学特征[J]. 世界有色金属, 2019,4:190-194. Wang L, Zhuo X X, Li Z Y, et al. Elemental geochemical characteristics of vertical profiles of typical soils in Fengshan County, Guangxi [J]. World Nonferrous Metals, 2019,4:190-194. [29] 林蕾,陈世宝.土壤中锌的形态转化、影响因素及有效性研究进展[J]. 农业环境科学学报, 2012,31(2):221-229. Lin L, Chen S B. Transformation and influence factors of speciation of zinc in soils and its effect on zinc bioavailability: a review [J]. Journal of Agro-Environment Science, 2012,31(2):221-229. [30] 张莉,季宏兵,高杰,等.贵州碳酸盐岩风化壳主元素、微量元素及稀土元素的地球化学特征[J]. 地球化学, 2015,44(4):323-336. Zhang L, Ji H B, Gao J, et al. Geochemical characteristics of major, trace and rare earth elements in typical carbonate weathered profiles of GuizhouPlateau [J]. Geochimica, 2015,44(4):323-336. [31] 黄奕伦,林楚珊,朱树标.广西土壤锌含量及不同土壤类型施锌效应研究-Ⅰ、广西土壤含锌量及分布[J]. 南方农业学报, 1987,(1):25- 30. Huang Y L, Lin C S, Zhu S B. Study on soil zinc content and effects of zinc application in Different soil types in Guangxi-I. Soil zinc content and distribution in Guangxi [J]. Journal of Southern Agriculture, 1987, (1):25-30. [32] 杨鉴,刘方,朱健,等.地层岩性变化对土壤Zn空间异质性的影响:以贵州省为例[J]. 长江流域资源与环境, 2022,31(8):1836-1844. Yang J, Liu F, Zhu J, et al. Effects of stratigraphic lithology changes on soil Zn spatial heterogeneity: a case study of Guizhou Province [J]. Resources and Environment in the Yangtze Basin, 2022,31(8):1836- 1844. [33] Xiao H, Shahab A, Xi B D, et al. Heavy metal pollution, ecological risk, spatial distribution, and source identification in sediments of the Lijiang River, China [J]. Environmental Pollution, 2021,269:116189. [34] 殷雨竹,樊彦国,潘瑜春,等.北京地区大气重金属沉降污染特征与风险评价[J]. 中国环境科学, 2023,43(6):2763-2776. Yin Y Z, Fan Y G, Pan Y C, et al. Pollution characteristics and risk assessment of atmospheric heavy metal deposition in Beijing [J]. China Environmental Science, 2023,43(6):2763-2776. [35] Luo L, Ma Y, Zhang S, et al. An inventory of trace element inputs to agricultural soils in China [J]. Journal of Environmental Management, 2009,90:2524-2530. [36] 王梦梦,原梦云,苏德纯.我国大气重金属干湿沉降特征及时空变化规律[J]. 中国环境科学, 2017,37(11):4085-4096. Wang M M, Yuan M Y, Su D C. Characteristics and spatial-temporal variation of heavy metals in atmospheric dry and wet deposition of China [J]. China Environmental Science, 2017,37(11):4085-4096. [37] 胡冠钊,乔少博,王驹,等.广州市南沙区高新沙水库大气干湿沉降重金属含量、沉降通量特征分析及其对水库水质的影响[J]. 环境科学学报, 2022,42(10):120-128. Hu G Z, Qiao S B, Wang J, et al. Heavy metal contents and deposition fluxes in atmospheric dry and wet deposition of Gaoxinsha Reservoir in Nansha District, Guangzhou and the impact on water quality [J]. Acta Scientiae Circumstantiae, 2022,42(10):120-128. [38] Feng W L, Guo Z H, Peng C, et al. Atmospheric bulk deposition of heavy metal(loid)s in central south China: Fluxes, influencing factors and implication for paddy soils [J]. Journal of Hazardous Materials, 2019,371:634-642. [39] 孙亚芳,王祖伟,孟伟庆,等.天津污灌区小麦和水稻重金属的含量及健康风险评价[J]. 农业环境科学学报, 2015,(4):679-685. Sun Y F, Wang Z W, Meng W Q, et al. Contents and health risk assessment of heavy metals in wheat and rice grown in Tianjin sewage irrigation area, China [J]. Journal of Agro-Environment Science, 2015, (4):679-685. [40] GB 5084-2021农田灌溉水质标准[S]. GB 5084-2021 Standard for irrigation water quality [S]. [41] Xia X Q, Yang Z F, Cui Y J, et al. Soil heavy metal concentrations and their typical input and output fluxes on the southern Song-nen Plain, Heilongjiang Province, China [J]. Journal of Geochemical Exploration, 2014,(139):85-96. [42] 沈兵.复合肥中添加微量元素锌的作物吸收效果[J]. 化肥工业, 2014,(2):63-64,68. Shen B. Crop absorption effect of compound fertilizer added trace element zinc [J]. Chemical Fertilizer Industry, 2014,(2):63-64,68. [43] Wu C, Dun Y, Zhang Z J, et al. Foliar application of selenium and zinc to alleviate wheat cadmium toxicity and uptake from cadmium- contaminated soil [J]. Ecotoxicology and Environmental Safety, 2020,190:110091. [44] 牛硕,王天齐,杨阳,等.田间施用锌肥对小麦籽粒镉累积的影响及施用风险[J]. 环境科学, 2023,44(2):984-990. Niu S, Wang T Q, Yang Y, et al. Effect of zinc fertilizer application on cadmium accumulation in wheat grain and its application risk [J]. Environmental Science, 2023,44(2):984-990. [45] 姚澄,周天宇,樊广萍,等.不同锌肥对土壤镉有效性及小麦镉吸收转运的影响[J]. 农业环境科学学报, 2024,43(1):19-29. Yao C, Zhou T Y, Fan G P, et al. Effects of different zinc fertilizers on soil cadmium availability and cadmium uptake and transport in wheat [J]. Journal of Agro-Environment Science, 2024,43(1):19-29. [46] 汤奇峰,杨忠芳,张本仁,等.成都经济区农业生态系统土壤镉通量研究[J]. 地质通报, 2007,(7):869-877. Tang Q F, Yang Z F, Zhang B R, et al. Study on soil cadmium flux in agricultural ecosystem of Chengdu economic zone [J]. Geological Bulletin of China, 2007,(7):869-877. [47] Ji W B, Yang Z F, Yu T, et al. Potential ecological risk assessment of heavy metals in the Fe-Mn nodules in the karst area of Guangxi, Southwest China [J]. Bulletin of Environmental Contamination and Toxicology, 2021,106(1):51-56. [48] Yang Q, Yang Z F, Filippelli G M, et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China [J]. Chemical Geology, 2021,(567):120081. [49] Gao T, Ke S, Wang S J, et al. Contrasting mg isotopic compositions between Fe-Mn nodules and surrounding soils: accumulation of light mg isotopes by Mg-depleted clay minerals and Fe oxides [J]. Geochimica et Cosmochimica Acta, 2018,237:205-222. [50] Wang Y Z, Yu T, Yang Z F, et al. Zinc concentration prediction in rice grain using back-propagation neural network based on soil properties and safe utilization of paddy soil: A large-scale field study in Guangxi, China [J]. The Science of the Total Environment, 2021,798:149270. [51] 周亚龙,郭志娟,王乔林,等.雄安新区富硒土地资源分布特征及开发利用评价[J]. 中国环境科学, 2022,42(8):3913-3921. Zhou Y L, Guo Z J, Wang Q L, et al. Distribution characteristics and utilization evaluation of selenium-rich land resources in Xiong’an New District [J]. China Environmental Science, 2022,42(8):3913- 3921. [52] 马宏宏,彭敏,刘飞,等.广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020,41(1): 449-459. Ma H H, Peng M, Liu F, et al. Bioavailability translocation and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China [J]. Environmental Science, 2020,41(1):449-459. [53] Wang Y Z, Yang Z F, Ji J F, et al. Soil threshold values for Zn based on soil-rice system and health risk assessment in a typical carbonate area of Guangxi [J]. Bulletin of Environmental Contamination and Toxicology, 2021,106(1):146-152. [54] 郭志娟,周亚龙,王乔林,等.雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 2021,41(1):431-441. Guo Z J, Zhou Y L, Wang Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District [J]. China Environmental Science, 2021,41(1):431-441. [55] Li C, Yang Z F, Yu T, et al. Study on safe usage of agricultural land in karst and non-karst areas based on soil Cd and prediction of Cd in rice: a case study of Heng county, Guangxi [J]. Ecotoxicology and Environmental Safety, 2021,208. [56] Liu P, Wang P, Lu Y, et al. Modeling kinetics of heavy metal release from field-contaminated soils: roles of soil adsorbents and binding sites [J]. Chemical Geology, 2019,506:187-196. [57] Barakat N, Laudadio V, Cazzato E, et al. Antioxidant potential and oxidative stress markers in wheat (Triticum aestivum L.) treated with phytohormones under salt-stress condition [J]. International Journal of Agriculture & Biology, 2013,15(5):843-849. [58] 廖红为,蒋忠诚,周宏,等.铅锌矿周边岩溶流域重金属污染及健康风险评价[J]. 环境科学, 2023,44(11):6085-6094. Liao H W, Jiang Z C, Zhou H, et al. Heavy metal pollution and health risk assessment in karst basin around a lead-zinc mine [J]. Environmental Science, 2023,44(11):6085-6094. [59] 余飞,罗恺,王佳彬,等.重庆岩溶地质高背景区土壤-农作物系统重金属累积特征及影响因素[J]. 中国岩溶, 2023,42(1):71-83. Yu F, Luo K, Wang J B, et al. Characteristics and influencing factors of heavy metal accumulation in soil-crop system in karst high background area of Chongqing [J]. Carsologica Sinica, 2023,42(1):71-83. |
|
|
|