Effects of triazine herbicide prometryn on marine phytoplankton communities—Based on analysis of microalgae population dynamics, interspecific competition and photosynthetic capacity
LI Yi-lei1, LIANG Wei1,2, ZHAO Zi-ang1, RU Shao-guo1, ZHANG Xiao-na1
1. Marine Life Science College, Ocean University of China, Qingdao 266003, China; 2. Department of Ecology and Environment of Shandong Province, Jinan 250102, China
Abstract:In this study, effects of prometryn on the population dynamics, photosynthetic capacity, and interspecific competition of three marine microalgae species, including Phaeodactylum tricornutum, Chlorella pacifica, and Isochrysis galbana, were evaluated based on the monoculture experiment and the co-culture experiment with two microalgaes (cell density ratio1:1). The results showed that the 96h-EC50 values of prometryn for P. tricornutum, C. pacifica, and I. galbana were 7.65, 16.67, and 4.11 μg/L, respectively; and the toxicity from high to low was as follows:I. galbana > P. tricornutum > C. pacifica. Prometryn exposure significantly inhibited the photosynthesis of these three microalgaes and thereby reduced their population growth. In addition, prometryn treatment also weakened the competitive inhibition of P. tricornutum by C. pacifica in the co-culture group and during the cocultivation of C. pacifica and I. galbana exposed to environmental concentrations (0.5 and 5μg/L) of prometryn for 12 days, an extinction of the sensitive species I. galbana was observed, indicating an interspecific interaction more favorable to diatoms. Overall, this study would provide more theoretical support for assessing the marine ecological risk of the triazine herbicide prometryn.
Yang L, Li H, Zhang Y, et al. Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations[J]. Environment International, 2019,133:105175.
[2]
Dsikowitzky L, Iveta Nguyen T M, Konzer L, et al. Occurrence and origin of triazine herbicides in a tropical coastal area in China:A potential ecosystem threat[J]. Estuarine, Coastal and Shelf Science, 2020,235:106612.
[3]
Chen C, Zou W, Cui G, et al. Ecological risk assessment of current-use pesticides in an aquatic system of Shanghai, China[J]. Chemosphere, 2020,257:127222.
[4]
Li Z, Chen L, Gao H, et al. Determination of triazines in surface water using solid phase extraction-high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2006,24(3):267.
[5]
徐雄,李春梅,孙静,等.我国重点流域地表水中29种农药污染及其生态风险评价[J]. 生态毒理学报, 2016,11(2):347-354. Xiong X, Li C M, Sun J, et al. Pollution and ecological risk assessment of 29 pesticides in surface water of key watersheds in China[J]. Asian Journal of Ecotoxicolog, 2016,11(2):347-354.
[6]
Kunene P N, Mahlambi P N. Optimization and application of ultrasonic extraction and Soxhlet extraction followed by solid phase extraction for the determination of triazine pesticides in soil and sediment[J]. Journal of Environmental Chemical Engineering, 2020, 8(2):103665.
[7]
Graymore M, Stagnitti F, Allinson G. Impacts of atrazine in aquatic ecosystems[J]. Environment International, 2001,26(7):483-495.
[8]
Kostopoulou S, Ntatsi G, Arapis G, et al. Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics[J]. Chemosphere, 2020,239:124582.
[9]
Liebig M, Schmidt G, Bontje D, et al. Direct and indirect effects of pollutants on algae and algivorous ciliates in an aquatic indoor microcosm[J]. Aquatic Toxicology, 2008,88(2):102-10.
[10]
Yang L, Zhang Y. Effects of atrazine and its two major derivatives on the photosynthetic physiology and carbon sequestration potential of a marine diatom[J]. Ecotoxicol Environ Saf, 2020,205:111359.
[11]
Lozano P, Trombini C, Crespo E, et al. ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine)[J]. Ecotoxicology and Environmental Safety, 2014,104:294-301.
[12]
张鑫鑫,唐学玺,姜爽,等.2,2',4,4'-四溴联苯醚对2种赤潮微藻种间竞争的影响[J]. 中国环境科学, 2012,32(12):2219-2223. Zhang X X, Tang X X, Jiang S, et al. Effects of 2,2',4,4'-Tetrabromodiphenyl ether on interspecific competition of two red tide microalgae[J]. China Environmental Science, 2012,32(12):2219-2223.
[13]
董晋延.抗生素污染物诺氟沙星对两种浮游植物似然竞争的影响研究[D]. 昆明:云南大学, 2017. Dong J Y.Study on the effect of antibiotic contaminant Norfloxacin on likelihood competition of two phytoplankton species[D]. Kunming:Yunnan University, 2017.
[14]
Sun Y, Chen Y, Wei J, et al. Ultraviolet-B radiation stress alters the competitive outcome of algae:Based on analyzing population dynamics and photosynthesis[J]. Chemosphere, 2021,272:129645.
[15]
Tan X, Dai K, Parajuli K, et al. Effects of phenolic pollution on interspecific competition between Microcystis aeruginosaand Chlorella pyrenoidosa and their photosynthetic responses[J]. Int J Environ Res Public Health, 2019,16(20):3947.
[16]
谭啸,徐杨雪,李聂贵,等.超声波对铜绿微囊藻与蛋白核小球藻生理特征及竞争生长的影响[J]. 应用生态学报, 2022,33(10):2845-2852. Tan X, Xu Y X, Li N G, et al. Effects of ultrasound on the physiological characteristics and competitive growth between Microcystis aeruginosa and Chlorella pyrenoidosa[J]. Chinese Journal of Applied Ecology, 2022,33(10):2845-2852.
[17]
Zhu W, Chen H, Guo L, et al. Effects of linear alkylbenzene sulfonate (LAS) on the interspecific competition between Microcystis and Scenedesmus[J]. Environ. Sci. Pollut. Res. Int., 2016,23(16):16194-200.
[18]
Tan X, Zhang D, Duan Z, et al. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment[J]. Environ Sci Pollut Res Int, 2020, 27(1):344-352.
[19]
林志芬,曹志民,郭小菊,等.赤潮异湾藻与三角褐指藻的竞争及其化感作用初探[J]. 环境科学与技术, 2010,33(10):5-9,38. Lin Z F, Cao Z M, Guo X J, et al. Competition and allelopathy between Heterosigma akashiwo and Nitzschia closterium[J]. Environmental Science and Technology, 2010,33(10):5-9,38.
[20]
Yongman itchal W, Ward O P. Growth and production of omega -3fatty acid by Phaeodactylum triconutum under culture conditions[J]. Appl. Environ. Microbiol., 1991,57(2):419-425.
[21]
许家辉,陈世雄,俞兴发,等.投喂海水小球藻和三角褐指藻对泥蚶成贝镉排出的影响[J]. 海洋与湖沼, 2018,49(3):624-629. Xu J H, Chen S X, Yu X F, et al. Effects of feeding Chlorella salina andPseudomonas aeruginosa on cadmium discharge from adults of Tegillarca granosa[J]. Oceanologia et limnologia sinica, 2018,49(3):624-629.
[22]
王森.L-肉碱对海水小球藻种群增长和光合色素合成的调控作用[D]. 吉林农业大学, 2019. Wang S. Regulative effect of L-carnitine on the population growth and photosynthetic pigment synthesis of marine Chlorella sp.[D]. Jilin Agricultural University, 2019.
[23]
王旭浩.海水小球藻和杜氏盐藻作为海洋环境监测指标生物的分析[D]. 辽宁师范大学, 2016. Wang X H. Analysis of marine Chlorella and Dunaliella salina as biological indicators of marine environmental monitoring[D]. Liaoning Normal University, 2016.
[24]
Molina Cárdenas C A, Licea-Navarro A F, Sánchez-Saavedra M D P. Effects of Vibrio cholerae on fatty acid profiles in Isochrysis galbana[J]. Algal Research, 2020,46:101802.
[25]
程浩楠,程方平,王淑红.温度和微藻饵料对强额孔雀水蚤摄食的影响[J]. 海洋科学, 2021,45(3):24-32. Cheng H N, Cheng F P, Wang S H. Effects of temperature and microalgae feed on the feeding of Parvocalanus carssirostris[J]. Marine sciences, 2021,45(3):24-32.
[26]
孙晶.重金属影响微藻生长富集油脂的机理研究[D]. 浙江大学, 2015. Sun J. Influence of heavy metals on microalgal growth and lipids accumulation[D]. Zhejiang University, 2015.
[27]
Peng J, Gan J, Ju X, et al. Analysis of triazine herbicides in fish and seafood using a modified QuEChERS method followed by UHPLC-MS/MS[J]. Journal of Chromatography B, 2021,1171:122622.
[28]
Tian Y Y, Liu M X, Sang Y X, et al. Degradation of prometryn in Ruditapes philippinarum using ozonation:Influencing factors, degradation mechanism, pathway and toxicity assessment[J]. Chemosphere, 2020,248:126018.
[29]
杨佩昀.小环藻,小球藻和铜绿微囊藻的种间竞争以及大型溞和金鱼藻对其抑制效果研究[D]. 新乡:河南师范大学, 2016. Yang P Y. The syudy on interspecific competition among Cyclotella. sp., Chlorella vugaris and Microcystis aeruginosa and the inhibitory effect on three growth by Daphnia magna and Ceratophyllum demersum[D]. Xinxiang:Henan Normal University, 2016.
[30]
王少沛,李卓佳,曹煜成,等.微绿球藻、隐藻、颤藻的种间竞争关系[J]. 中国水产科学, 2009,16(5):765-772. Wang S P, Li Z J, Cao Y C, et al. Interspecific competition relationship among Nannochloropsis oculata, Cryptomonas erosa and Oscillatoria sp.[J]. Journal of Fishery Sciences of China, 2009,16(5):765-772.
[31]
陈德辉,刘永定,袁峻峰,等.微囊藻和栅藻共培养实验及其竞争参数的计算[J]. 生态学报, 1999,(6):908-913. Chen D H, Liu Y D, Yuan J F, et al. Co-culture experiment of Microcystis and Scenedesmus and calculation of competitive Parameters[J]. Acta Ecologica Sinica,1999,(6):908-913.
[32]
Wang Z, Sun X, Ru S, et al. Effects of co-exposure of the triazine herbicides atrazine, prometryn and terbutryn on Phaeodactylum tricornutum photosynthesis and nutritional value[J]. Science of The Total Environment, 2022,807:150609.
[33]
王林林,张光富,何谐,等.除草剂百草枯对浮萍科不同植物的毒性效应比较[J]. 生态学杂志, 2013,32(6):1551-1556. Wang L L, Zhang G F, He X, et al. Comparison of toxic effects of herbicide paraquat on different plants of duckweed family[J]. Chinese Journal of Ecology, 2013,32(6):1551-1556.
[34]
马健荣,刘明,徐信,等.硅藻研究与应用展望[J]. 山东农业科学, 2010,8:52-56. Ma J R, Liu M, Xu X, et al. Prospects for research and application of diatoms[J]. Shandong Agricultural Sciences, 2010,8:52-56.
[35]
Lemahieu C, Bruneel C, Dejonghe C, et al. The cell wall of autotrophic microalgae influences the enrichment of long chain omega-3fatty acids in the egg[J]. Algal Research, 2016,16:209-15.
[36]
耿伟伟,倪维铭,李文芳,等.普通小球藻对CTAC污染胁迫的响应及耐受能力研究[J]. 化学研究与应用, 2021,33(4):715-719. Geng W W, Ni W M, Li W F, et al. Response and tolerance of Chlorella vulgaris to CTAC pollution stress[J]. Chemical Research and Application, 2021,33(4):715-719.
[37]
李文芳,肖新峰,张林林,等.As(Ⅲ)胁迫对小球藻生化指标的影响及其耐受性机制研究[J]. 化学研究与应用, 2023,35(3):678-683. Li W F, Xiao X F, Zhang L L, et al. Effects of As (III) stress on biochemical indicators of Chlorella vulgaris and its tolerance mechanism[J]. Chemical Research and Application, 2023,35(3):678-683.
[38]
Yang W, Gao X, Wu Y, et al. Chemical-and species-specific toxicity of nonylphenol and octylphenol to microalgae Chlorella pyrenoidosa and Scenedesmus obliquus[J]. Environmental Toxicology and Pharmacology, 2021,81:103517.
[39]
Boulahia K, Carol P, Planchais S, et al. Phaseolus vulgaris L. seedlings exposed to prometryn herbicide contaminated soil trigger an oxidative stress response[J]. J. Agric. Food Chem., 2016,64(16):3150-3160.
[40]
徐#鸽.海洋硅藻对温度与光环境变化的响应与适应机理研究[D]. 济南:山东大学, 2021. Xu H. Responses of marine diatoms to temperature and light environment changes and potential acceleration mechanisms[D]. Jinan:Shandong University, 2021.
[41]
Fuhrman J A, Cram J A, Needham D M. Marine microbial community dynamics and their ecological interpretation[J]. Nature Reviews Microbiology, 2015,13(3):133-146.
[42]
Wilkinson A D, Collier C J, Flores F, et al. Acute and additive toxicity of ten photosystem-II herbicides to seagrass[J]. Scientific Reports, 2015,5(1):17443.
[43]
廖姿蓉,王朝晖.海洋卡盾藻与三种典型海洋硅藻的种间竞争研究[J]. 海洋环境科学, 2019,38(3):321-327. Liao Z R, Wang C H. Interspecific competition between Chattonella marina and three typical marine diatoms[J]. Marine environmental science, 2019,38(3):321-327.
[44]
朱益辉.低盐富营养化水域表层藻类竞争关系及其对水体微生物种群影响研究[D]. 南京:南京信息工程大学, 2021. Zhu Y H. Study on the competition relationship of surface algae in low saline eutrophication waters and its impact on the microbial population in the waters[D]. Nanjing:Nanjing University of Information Science and Technology, 2021.
[45]
Flöder S, Combüchen A, Pasternak A,et al. Competition between pelagic and benthic microalgae for phosphorus and light. Aquatic Sciences, 2006,68(4):425-433.
[46]
张青田,王新华,林超,等.温度和光照对铜绿微囊藻生长的影响[J]. 天津科技大学, 2011,26(4):24-27. Zhang Q T, Wang X H, Lin C, et al. Effects of temperature and light on the growth of Microcystis aeruginosa[J]. Tianjin University of Science and Technology, 2011,26(4):24-27.
[47]
魏杰,赵文,杨为东,等.起始生物量比对3种海洋微藻种间竞争的影响[J]. 生态学报, 2012,32(4):120-128. Wei J, Zhao W, Yang W D, et al. Effect of initial biomass ratio on interspecific competition of three marine microalgae species[J]. Acta Ecologica Sinica, 2012,32(4):120-128.
[48]
刘春颖.海水中一氧化氮对浮游植物生长影响的规律研究[D]. 青岛:中国海洋大学, 2006. Liu C Y. Study on the effect of NO in seawater on the growth of phytoplankton[D]. Qingdao:Ocean University of China, 2006.
[49]
付梅.磷化氢对海洋微藻的影响及作用机制研究[D]. 青岛:中国科学院研究生院(海洋研究所), 2013. Fu M.Effects of PH3 on marine microalgae and its mechanism[D]. Qingdao:The Institute of Oceanology, Chinese Academy of Sciences, 2013.
[50]
张达娟,张兴华,唐学玺,等.三角褐指藻与抑食金球藻的竞争及化感作用研究[J]. 海洋学报, 2017,6:84-94. Zhang D J, Zhang X H, Tang, X X, et al. Study on the competition and allelopathy between Phaeodactylum tricornutum and Chrysococcus[J]. Acta Oceanologica Sinica, 2017,6:84-94.
[51]
廖姿蓉.三种典型海洋硅藻与海洋卡盾藻及锥状斯氏藻的种间竞争研究[D]. 广州:暨南大学, 2019. Liao Z R. Interspecific competition among three typical marine diatoms, Marine Cladosporium and Colletotrichum[D]. Guangzhou:Jinan University, 2019.
[52]
赵松浩,陶秋爽,沈建仁,等.硅藻岩藻黄素-叶绿素a/c蛋白——揭秘红系捕光天线复合物[J]. 自然杂志, 2021,43(3):157-164. Zhao S H, Tao Q S, Shen J R, et al. Diatom fucoxanthin chlorophyll a/c protein——uncover the red light harvesting antenna complex[J]. Chinese Journal of Nature, 2021,43(3):157-164.
[53]
Wang W, Yu LJ, Xu C, et al. Structural basis for blue-green light harvestingand energy dissipation in diatoms.Science, 2019,363(6427):eaav0365.
[54]
Büchel C. Evolution and function of light harvesting proteins[J]. Plant Physiol, 2015,172:62-75.