Effect and mechanism of magnetic floatable bead VMB@Fe3O4@CS on removing Anabaena and Microcystis
CHE Wen-lu1, ZHAO Yan1, ZHANG Gao-shan1, LI Yan-peng1,2
1. School of Water and Environment, Chang'an University, Xi'an 710054, China; 2. Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang'an University, Xi'an 710054, China
Abstract:In order to effectively treat harmful algal blooms and avoid secondary pollution by chemical substances, maglev beads VMB@Fe3O4@CS were synthesized through a novel method combined with magnetic flocculation and float flotation which use vitrified microbeads, Fe3O4 and chitosan as raw materials, to remove Anabaena flos-aquae and Microcystis aeruginosa. The results showed that the optimal removal efficiencies of the two species of algae were 99.01% (0.12g/L) and 98.6% (0.21g/L), respectively. VMB@Fe3O4@CS achieved a high removal rate (> 60%) in a wide pH range (4~10) and water temperature range (5~35°C), and the increase of ionic strength had a negative effect on the removal of microalgae. Through morphological observation, surface hydrophobicity and Zeta potential analysis, it was determined that electrostatic attraction and adsorption bridging were the main flocculation mechanisms of maglev beads on algal cells. The experimental results show that the prepared VMB@Fe3O4@CS has a great potential to control harmful algal blooms.
车文露, 赵岩, 张高山, 李彦鹏. 磁性浮珠VMB@Fe3O4@CS对鱼腥藻和微囊藻的去除[J]. 中国环境科学, 2024, 44(3): 1526-1533.
CHE Wen-lu, ZHAO Yan, ZHANG Gao-shan, LI Yan-peng. Effect and mechanism of magnetic floatable bead VMB@Fe3O4@CS on removing Anabaena and Microcystis. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(3): 1526-1533.
[1] 于仁成,吕颂辉,齐雨藻,等.中国近海有害藻华研究现状与展望[J]. 海洋与湖沼, 2020,51(4):768-788. Yu R C, Lv S H, Qi Y Z, et al. Progress and perspectives of harmful algal bloom studies in china[J]. Oceanologia et Limnologia Sinica, 2020,51(4):768-788. [2] Ma X, Fox A, Fox S, et al. Phytoplankton and benthic infauna responses to aeration, an experimental ecological remediation, in a polluted subtropical estuary with organic-rich sediments[J]. PLOS ONE, 2023,18(1):e0280880. [3] Peng Y, Zhang Z, Wang M, et al. Inactivation of harmful Anabaena flos-aquae by ultrasound irradiation:Cell disruption mechanism and enhanced coagulation[J]. Ultrasonics Sonochemistry, 2020,69:105254. [4] Le V V, Ko S-R, Kang M, et al. The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession:A mesocosm study[J]. Environmental Pollution, 2022,311:119849. [5] 廖敏妃,聂小保,万俊力,等.磷酸钙结晶与PFS混凝联用去除铜绿微囊藻和DOC[J]. 中国环境科学, 2023,43(6):3166-3172. Liao M F, Nie X B, Wan J L, et al. Simultaneous removal of Microcystis aeruginosa and DOC by PFS coagulationcombined with Ca3(PO4)2 crystallization[J]. China Environmental Science, 2023, 43(6):3166-3172. [6] 刘姗姗,俞志明,宋秀贤,等.微生物复合改性粘土去除东海原甲藻(Prorocentrum donghaiense)初探[J]. 海洋与湖沼, 2021,52(5):1170-1179. Liu S S, Yu Z M, Song X X, et al. Research on mitigation of Prorocentrum donghaiense by micro-modified clay[J]. Oceanologia et Limnologia Sinica, 2021,52(5):1170-1179. [7] Abo Markeb A, Llimos-Turet J, Ferrer I, et al. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater[J]. Water Res., 2019,159:490-500. [8] 王晓宇,刘闯,梁文艳.Fe3O4@植物多酚收集微藻的磁泳过程机制研究[J]. 环境科学与技术, 2022,45(5):44-52. Wang X Y, Liu C, Liang W Y. Magnetophoresis process mechanism of harvesting microalgae by use of Fe3O4@plant-polyphenol[J]. Environmental Science & Technology, 2022,45(5):44-52. [9] 靳晓光,张洪刚,潘纲.阳离子化壳聚糖改性黏土絮凝去除藻华[J]. 环境工程学报, 2018,12(9):2437-2445. Jin X G, Zhang H G, Pan G. Removal of harmful algal blooms by using cationic-chitosan modified clays[J]. Chinese Journal of Environmental Engineering, 2018,12(9):2437-2445. [10] Dai D, Qv M, Liu D, et al. Structural insights into mechanisms of rapid harvesting of microalgae with pH regulation by magnetic chitosan composites:A study based on E-DLVO model and component fluorescence analysis[J]. Chemical Engineering Journal, 2023,456. [11] Yin Z, Zhang L, Hu D, et al. Biocompatible magnetic flocculant for efficient harvesting of microalgal cells:isotherms, mechanisms and water recycling[J]. Separation and Purification Technology, 2021,279:119679. [12] 杨瑾晟,姜磊,芦津,等.絮凝控制高浓度藻华对水质和植被恢复的影响[J]. 中国环境科学, 2023,43(2):561-567. Yang J S, Jiang L, Lu J, et al. Effects of controlling heavy cyanobacterial blooms through flocculation on water quality and submerged macrophyte restoration[J]. China Environmental Science, 2023,43(2):561-567. [13] Xu K, Zou X, Chang W, et al. Microalgae harvesting technique using ballasted flotation:A review[J]. Separation and Purification Technology, 2021,276. [14] Xu K, Zou X, Wen H, et al. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres:A novel approach[J]. Bioresour Technol., 2018,267:341-346. [15] Visser P M, Verspagen J M H, Sandrini G, et al. How rising CO(2) and global warming may stimulate harmful cyanobacterial blooms[J]. Harmful Algae, 2016,54:145-159. [16] Mowe M A D, Porojan C, Abbas F, et al. Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species[J]. Harmful Algae, 2015,50:88-98. [17] Shadrin N, Balycheva D, Anufriieva E. Microphytobenthos in the hypersaline water bodies, the case of bay sivash (crimea):Is Salinity the Main Determinant of Species Composition?[J]. Water, 2021, 13(11):1542. [18] 张文君,沈洲,黄佳,等.疏水性对小球藻气浮采收效率影响的实验研究[J]. 可再生能源, 2017,35(2):173-178. Zhang W J, Shen Z, Huang J, et al. Influence of microalgae hydrophobicity on flotation recovery of Chlorella by air flotation[J]. Renewable Energy Resources, 2017,35(2):173-178. [19] AfzaliTabar M, Alaei M, Ranjineh Khojasteh R, et al. Preference of multi-walled carbon nanotube (MWCNT) to single-walled carbon nanotube (SWCNT) and activated carbon for preparing silica nanohybrid pickering emulsion for chemical enhanced oil recovery (C-EOR)[J]. Journal of Solid State Chemistry, 2017,245:164-173. [20] Yin Z, Li S, Hu D, et al. Performance evaluation of different chitosan- clay composite materials for efficient harvesting of Chlorella vulgaris and impacts on downstream bioproduct processing and water reusability[J]. Chemical Engineering Journal, 2022,430:132892. [21] Zheng X, Zheng H, Xiong Z, et al. Novel anionic polyacrylamide- modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions[J]. Chemical Engineering Journal, 2020,392:123706. [22] Dudek G, Turczyn R, Konieczny K. Robust poly(vinyl alcohol) membranes containing chitosan/chitosan derivatives microparticles for pervaporative dehydration of ethanol[J]. Separation and Purification Technology, 2020,234:116094. [23] Fu Y, Hu F, Li H, et al. Application and mechanisms of microalgae harvesting by magnetic nanoparticles (MNPs)[J]. Separation and Purification Technology, 2021,265:118519. [24] Acosta-Ferreira S, Castillo O S, Madera-Santana J T, et al. Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia[J]. Biotechnology Reports, 2020,28:e00554. [25] Renault F, Sancey B, Badot P M, et al. Chitosan for coagulation/flocculation processes-An eco-friendly approach[J]. European Polymer Journal, 2009,45(5):1337-1348. [26] 赵晓红,杨雨萌,王文科,等.壳聚糖改性铝污泥对铜绿微囊藻的絮凝去除[J]. 中国环境科学, 2021,41(10):4677-4685. Zhao X H, Yang Y M, Wang W K, et al. Chitosan modified alum sludge for alga M. aeruginosa removal by flocculation[J]. China Environmental Science, 2021,41(10):4677-4685. [27] Gerulová K, Bartošová A, Blinová L, et al. Magnetic Fe3O4- polyethyleneimine nanocomposites for efficient harvesting of Chlorella zofingiensis, Chlorella vulgaris, Chlorella sorokiniana, Chlorella ellipsoidea and Botryococcus braunii[J]. Algal Research, 2018,33:165-172. [28] 周贝,毕永红,胡征宇.温度对铜绿微囊藻细胞浮力的调控机制[J]. 中国环境科学, 2014,34(7):1847-1854. Zhou B, Bi Y H, Hu Z Y. Effects of temperature on the buoyancy of Microcystis aeruginosa[J]. China Environmental Science, 2014,34(7):1847-1854. [29] Chen S, Gui D, Tang L, et al. Effects of NaCl/CaCl2 on the surface hydration and flotation of lignite particles[J]. International Journal of Coal Preparation and Utilization, 2022,42(5):1563-1581. [30] Wu Z, Zhu Y, Huang W, et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium[J]. Bioresource Technology, 2012,110:496-502. [31] Guenoun P, Davis H T, Tirrell M, et al. Aqueous micellar solutions of hydrophobically modified polyelectrolytes[J]. Macromolecules, 1996,29(11):3965-3969. [32] Volpe C D, Siboni S. Some reflections on acid-base solid surface free energy theories[J]. Journal of Colloid and Interface Science, 1997, 195(1):121-136. [33] Li N, Wang P, Wang S, et al. Electrostatic charges on microalgae surface:mechanism and applications[J]. Journal of Environmental Chemical Engineering, 2022,10(3):107516. [34] 邹华,潘纲,陈灏.离子强度对粘土和改性粘土絮凝去除水华铜绿微囊藻的影响[J]. 环境科学, 2005,26(2):148-151. Zou H, Pan G, Chen H. Effects of ionic strength on the flocculation and removal of cyanobacterial cells of microcystis aeruginosa by clays[J]. Environmental Science, 2005,26(2):148-151. [35] González-Fernández C, Ballesteros M. Microalgae autoflocculation:an alternative to high-energy consuming harvesting methods[J]. Journal of Applied Phycology, 2013,25(4):991-999. [36] Gatto M, Ochi D, Yoshida C M P, et al. Study of chitosan with different degrees of acetylation as cardboard paper coating[J]. Carbohydrate Polymers, 2019,210:56-63. [37] Nie X, Zhang H, Cheng S, et al. Study on the cell-collector-bubble interfacial interactions during microalgae harvesting using foam flotation[J]. Science of The Total Environment, 2022,806(4):150901.