Abstract:The coordination agent EDTA is usually found in industrial wastewater containing copper, and the stable soluble compound Cu-EDTA can be formed between EDTA and Cu(II), which makes it difficult to remove Cu(II) from the wastewater. In order to improve effectively the removal of Cu(II) from Cu-EDTA wastewater, dithiocarboxyl aminomethy-polyacrylamide (DTAPAM) was employed as heavy metal flocculant. The effects of hydraulic conditions, DTAPAM dosage, pH value, EDTA concentration, and initial Cu(II) concentration on the removal performance of Cu-EDTA with DTAPAM were investigated, and the optimal removal conditions for Cu-EDTA in water sample were determined. The removal mechanism of Cu-EDTA with DTAPAM was also explored by using some characterization methods, such as UV, IR, SEM and EDS. The results show that the optimal hydraulic conditions were as follows: the fast stirring time was 2min, the fast stirring speed was 160r/min, the slow stirring time was 20min, and the slow stirring speed was 50r/min. The removal performance of Cu-EDTA by DTAPAM was favorable for the initial Cu(Ⅱ) concentration of 25mg/L at pH 5.0~7.0, and the highest removal rate of Cu(II) reached 99.07% at pH 7.0. When the coordination ratio between EDTA and Cu(II) was 1:1, it had the ideal removal efficiency for Cu-EDTA with DTAPAM at different initial Cu(II) concentrations. The characterization results show that the chelation reaction should occur between Cu(II) and dithiocarboxylic groups (—CSS-) on the molecular chain of DTAPAM. At pH 2.0~9.0, the logarithm values of the chelation stability constant for DTAPAM-Cu were in the range of 13.09~13.71. For the removal mechanism of Cu-EDTA by DTAPAM, Cu(II) was replaced from Cu-EDTA by DTAPAM due to coordination competition, and the flocs were formed though chelation reaction between Cu(II) and DTAPAM. In addition, the adsorption bridging and net sweeping among flocs played a major role in the flocculation, which promoted the settlement of the flocs and improved the removal rate of Cu(II).
张航, 王刚, 周雅琦, 马玉. 重金属絮凝剂DTAPAM去除水中Cu-EDTA的条件优化和机理[J]. 中国环境科学, 2023, 43(2): 532-543.
ZHANG Hang, WANG Gang, ZHOU Ya-qi, MA Yu. Condition optimization and mechanism of heavy metal flocculant DTAPAM in the removal of Cu-EDTA from water. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(2): 532-543.
何佳,时迪,王贝贝,等.10种典型重金属在八大流域的生态风险及水质标准评价 [J]. 中国环境科学, 2019,39(7):2970-2982. He J, Shi D, Wang B B, et al. Ecological risk assessment and water quality standard evaluation of 10typical metals in eight basins in China [J]. China Environmental Science, 2019,39(7):2970-2982.
[2]
孙成伟.磁性Fe3O4复合材料的制备及其对重金属离子的去除研究 [D]. 安徽:中国科学技术大学, 2021. Sun C W. The preparation of magnetic Fe3O4 composites and the removl for heavy metal ions [D]. Anhui: University of Science and Technology of China, 2011.
[3]
郑欣钰.有机功能化磁性复合吸附剂制备及水处理应用研究 [D]. 重庆:重庆大学, 2021. Zheng Y X. Preparation of polymer-functionalized magnetic composite adsorbent and its application in water treatment [D]. Chongqing: Chongqing University, 2021.
[4]
Wang Q, Li Y, Liu Y, et al. Effective removal of the heavy metalorganic complex Cu-EDTA from water by catalytic persulfate oxidation: Performance and mechanisms [J]. Journal of Cleaner Production, 2021,314:128119.
[5]
易爽, 刘牡丹,宋卫锋,等.高效重金属捕集剂TDTC对络合铜的去除性能 [J]. 环境工程学报, 2021,15(12):3844-3853. Yi S, Liu M D, Song W F, et al. The performance of highly-efficient dithiocarbamate-based heavy metal chelating agent on complex copper removal [J]. Chinese Journal of Environmental Engineering, 2021,15(12):3844-3853.
[6]
Wang T, Wang Q, Soklun H, et al. A green strategy for simultaneous Cu-EDTA decomplexation and Cu precipitation from water by bicarbonateactivated hydrogen peroxide/chemical precipitation [J]. Chemical Engineering Journal, 2019,370:1298-1309.
[7]
徐恒山,巩冠群,张英杰,等.黄腐酸络合铜离子光谱学特征及机理构建 [J]. 光谱学与光谱分析, 2022,42(4):1010-1016. Xu H S, Gong G Q, Zhang Y J, et al. The spectroscopic characteristics of fulvic acid complexed with copper ion and the construction of the mechanism of action [J]. Spectroscopy and Spectral Analysis, 2022,42(4):1010-1016.
[8]
Han M J, He J Y, Wei X, et al. Deep purification of copper from Cu(II)-EDTA acidic wastewater by Fe(III) replacement/ diethyldithiocarbamate precipitation [J]. Chemosphere, 2022,300: 134546.
[9]
Guan Z, Guo Y, Li S, et al. Decomplexation of heterogeneous catalytic ozonation assisted with heavy metal chelation for advanced treatment of coordination complexes of Ni [J]. Science of The Total Environment, 2020,732:139223.
[10]
Pismenskaya N, Nikonenko V. Ion-Exchange Membranes and Processes [J]. Membranes, 2021,11(11):814.
[11]
Wu L, Wang H, Lan H, et al. Adsorption of Cu-EDTA chelates on tri-ammonium-functionalized mesoporous silica from aqueous solution [J]. Separation and Purification Technology, 2013,117:118-123.
[12]
Liu Y, Li Y, Li H, et al. Multiprocess catalyzed Cu-EDTA decomplexation by non-thermal plasma coupled with Fe/C microelectrolysis: Reaction process and mechanisms [J]. Separation and Purification Technology, 2022,280:119831.
[13]
Wang Y C, Han Z J, Li A, et al. Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents [J]. Environmental Pollution, 2021,283:117111.
[14]
胡鑫鑫,杨帅,尤欣雨,等.Ni/GO0.2-PAC0.8粒子电极的制备及其降解Cu-EDTA络合物效能 [J]. 环境工程学报, 2021,15(9):2922-2932. Hu X X, Yang S, You X Y, et al. Preparation of Ni/GO0.2-PAC0.8 particle electrode and its degradation performance of Cu-EDTA comlex [J]. Chinese Journal of Environmental Engineering, 2021, 15(9):2922-2932.
[15]
肖晓,孙水裕,严苹方,等.高效重金属捕集剂EDTC的结构表征及对酸性络合铜的去除特性研究 [J]. 环境科学学报, 2016,36(2): 537-543. Xiao X, Sun S Y, Yan P F, et al. Structure characterization of highly-efficient heavy metal chelating agent EDTC and its removal of acid complex copper [J]. Acta Scientiae Circumstantiae, 2016,36(2): 537-543.
[16]
Song P, Sun C, Wang J, et al. Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanismstudy [J]. Chemosphere, 2022,287:131971.
[17]
袁海飞,王刚,严亚萍,等.有机配位剂对重金属絮凝剂DTSPAM去除水中Cd(Ⅱ)性能的影响 [J]. 环境科学学报, 2020,40(7):2477-2485. Yuan H F, Wang G, Yan Y P, et al. Effects of organic coordination agents on the removal of Cd(Ⅱ) with heavy metal flocculant DTSPAM [J]. Acta Scientiae Circumstantiae, 2020,40(7):2477-2485.
[18]
管映兵.巯基乙酰化聚丙烯酰胺衍生物的制备及其除铜性能研究 [D]. 兰州:兰州交通大学, 2018. Guan Y B. Preparation of thiol acetylation polyacrylamide derivatives and their properties of copper removal [D]. Lanzhou: Lanzhou Jiaotong University, 2018.
[19]
李嘉.巯基乙酰化改性聚丙烯酰胺及其衍生物重金属螯合絮凝剂的性能研究 [D]. 兰州:兰州交通大学, 2019. Li J. Properties of heavy metal chelating flocculants with polyacrylamide and its derivatives modified by mercaptoacetyl reaction [D]. Lanzhou: Lanzhou Jiaotong University, 2019.
[20]
严亚萍,王刚,姜盛基,等.重金属絮凝剂DTAPAM对Cu(Ⅱ)去除条件的响应面优化 [J]. 环境科学学报, 2021,41(6):2156-2161. Yan Y P, Wang G, Jiang S J, et al. Response surface methodology for optimization Cu(Ⅱ) removal by heavy metal flocculant DTAPAM [J]. Acta Scientiae Circumstantiae, 2021,41(6):2156-2161.
[21]
王志科,王刚,徐敏,等.响应面法优化制备二硫代羧基化胺甲基聚丙烯酰胺 [J].中国环境科学, 2017,37(6):2114-2121. Wang Z K, Wang G, Xu M, et al. Preparation of dithiocarboxyl amino-methylated polyacrylamide optimized by response surface methodology [J]. China Environmental Science, 2017,37(6):2114-2121.
[22]
Feng Y, Zhang Q J, Wang J C, et al. Effect of pH on the chelating mechanism and stability constant of chitosan-Cu(II) chelate complex [J]. The Chinese Journal of Process Engineering, 2020,20(6):646-654.
[23]
严亚萍,王刚,王露露,等.二硫代羧基化羟甲基聚丙烯酰胺与Cu(Ⅱ)的螯合稳定性 [J]. 中国环境科学, 2021,41(7):3266-3274. Yan Y P, Wang G, Wang L L, et al. Chelating stability of dithiocarboxyl hydroxymethy-polyacrylamide with Cu(Ⅱ) [J]. China Environmental Science, 2021,41(7):3266-3274.
[24]
刘立华,周智华,吴俊,等.两性高分子螯合絮凝剂与Cu(Ⅱ)、Pb(Ⅱ)、Cd(Ⅱ)、Ni(Ⅱ)的螯合稳定性 [J]. 环境科学学报, 2013, 33(1):79-87. Liu L H, Zhou Z H, Wu J, et al. Chelating stability of amphoteric chelating polymer flocculant with Cu(Ⅱ), Pb(Ⅱ), Cd(Ⅱ), Ni(Ⅱ) [J]. Acta Scientiae Circumstantiae, 2013,33(1):79-87.
[25]
刘海龙,王东升,王敏,等.强化混凝对水力条件的要求 [J]. 中国给水排水, 2006,(5):1-4. Liu H L, Wang D S, Wang M, et al. requirement for hydrodynamic conditions in enhanced coagulation [J]. China Water & Wastewater, 2006,(5):1-4.
[26]
靳强,高鹏元,陈宗元,等.Visual MINTEQ软件在大学化学教学中的应用 [J]. 大学化学, 2021,36(12):192-198. Jin Q, Gao P Y, Chen Z Y, et al. Application of Visual MINTEQ software in collage chemistry teaching [J]. University Chemistry, 2021,36(12):192-198.
[27]
Kocaoba S, Cetin G, Akcin G. Chromium removal from tannery wastewaters with a strong cation exchange resin and species analysis of chromium by MINEQL+ [J]. Scientific Reports, 2022,12(1):1-10.
[28]
袁海飞,王刚,徐敏,等.重金属絮凝剂DTMPAM去除水中Cu(Ⅱ)和EDTA-Cu的性能 [J]. 环境科学学报, 2019,39(12):3985-3993. Yuan H F, Wang G, Xu M, et al. The perfoemance of Cu(Ⅱ) and EDTA-Cu removal in aqueous solutions with heavy metal flocculant DTMPAM [J]. Acta Scientiae Circumstantiae, 2019,39(12):3985-3993.
[29]
王刚,常青.两性高分子重金属絮凝剂PEX等电点与絮凝性能的研究 [J]. 环境化学, 2007,(2):180-183. Wang G, Chang Q. Study on isoelectric point and flocculation performance of amphoteric macromolecule heavy metal flocculant PEX [J]. Environmental Chemistry, 2007,(2):180-183.
[30]
王刚,李嘉,何宝菊,等.两性高分子絮凝剂聚乙烯亚胺基黄原酸钠除浊性能 [J]. 中国环境科学, 2018,38(12): 4537-4544. Wang G, Li J, He B J, et al. Turbidity removal performance of amphoteric polymer flocculant polyethyleneimine-based sodium xanthate [J]. China Environmental Science, 2018,38(12):4537-4544..
[31]
郑怀礼,钟春艳,岳虎秀,等.重金属离子捕集剂DTC(EDA)的合成及其应用 [J]. 环境化学, 2006,25(6):765-767. Zheng H L, Zhong C Y, Yue H X, et al. Synthesis and application of the heavy metal capturing agent DTC(EDA) [J]. Environmental Chemistry, 2006,25(6):765-767.
[32]
廖强强,王中瑗,李义久,等.三乙烯四胺基双(二硫代甲酸钠)及其重金属配合物的光谱研究 [J]. 光谱学与光谱分析, 2009,29(3):829-832. Liao Q, Wang Z Y, Li Y J, et al. Spectra study of a sodion triethylenetetramine-bisdithiocarbamate and its complexes with heavy metal ions [J]. Spectroscopy and Spectral Analysis, 2009,29(3):829-832.
[33]
黄君礼.等.紫外吸收光谱法及其应用 [M]. 北京:中国科学技术出版社, 1992. Huang J L. et al. Ultraviolet absorption spectroscopy and its application [M]. Beijing: Science and Technology of China press, 1992.
[34]
王文丰,黄翠萍.螯合沉淀法处理含络合铜废水 [J]. 印制电路信息, 2003,(11):62-64. Wang W F, Huang C P. Treatment of copper-complex-ion-containing wastewater with chelating precipitation [J]. Printed Circuit Information, 2003,(11):62-64.
[35]
刘立华,吴俊,李鑫,等.两性高分子螯合絮凝剂的合成及作用机理 [J]. 环境化学, 2011,30(4):843-850. Liu L H, Wu J, Li X, et al. Synthesis and Ni(Ⅱ) removal mechanism of amphoteric chelating polymer flocculant [J]. Environmental Chemistry, 2011,30(4):843-850.
[36]
华东理工大学分析化学教研组.分析化学.第6版 [M]. 北京:高等教育出版社, 2009:180-181. Analytical chemistry teaching and research group, East China University of Science and Technology. Analytical Chemistry, 6th edition [M]. Beijing: Higher Education Press, 2009:180-181.