Ecological vulnerability analysis of alpine meadow area based on pattern-quality-function ratio: take Diqing in Yunnan as an example
LI Zi-hui1, SU Xiang-yuan2, TIAN Tian3, ZHANG Ya1, CHEN Qing-song1, ZHU Kang-wen4, SONG Dan2, ZHANG Yan-jun5, BA Yong1, CHEN Wei-zhi1, DONG Chun-feng1, YANG Meng-jiao1, HOU Zheng1
1. China Geological Survey Kunming General Survey of Natural Resources Center, Technology Innovation Center for Natural Ecosystem Carbon Sink, Ministry of Natural Resources, Innovation Base for Eco-geological Evolution, Protection and Restoration of Southwest Mountainous Areas, Geological Society of China, Kunming 650100, China; 2. Chongqing Academy of Ecology and Environmental Sciences, Chongqing 401147, China; 3. Guizhou University of Engineering Science, Bijie 551700, China; 4. School of Smart City, Chongqing Jiaotong University, Chongqing 400074, China; 5. School of Business Management, Chongqing University of Technology, Chongqing 400054, China
Abstract:This study established a pattern-quality-function framework to evaluate the spatial and temporal characteristics of ecosystem vulnerability in the alpine meadow area of northwestern Yunnan Province. Additionally, a geographically weighted regression (GWR) model was utilized to analyze the spatial heterogeneity of driving factors on ecosystem vulnerability changes. The results showed that: (1) The ecosystem vulnerability index (EVI) decreases from north to south in the alpine meadow area of northwest Yunnan. (2) From 2000 to 2020, the ecosystem vulnerability index in the northern part of Diqing showed an increasing trend, with a maximum increase of 0.30, while a decreasing trend was detected in most areas in the central and southern parts of the region. (3) The influencing factors have significant impacts on the ecosystem vulnerability. The climate factors were sensitive to ecosystem vulnerability in the northern and southern parts of Diqing. Factors such as economic(GDP) and population(POP) were the main contributors to increasing the regional ecosystem vulnerability.
李子辉, 苏湘媛, 田甜, 张亚, 陈庆松, 朱康文, 宋丹, 张艳军, 巴永, 陈伟志, 董春凤, 杨梦娇, 侯征. 基于格局-质量-功能的高寒草甸区生态脆弱性分析——以云南迪庆为例[J]. 中国环境科学, 2024, 44(4): 2273-2285.
LI Zi-hui, SU Xiang-yuan, TIAN Tian, ZHANG Ya, CHEN Qing-song, ZHU Kang-wen, SONG Dan, ZHANG Yan-jun, BA Yong, CHEN Wei-zhi, DONG Chun-feng, YANG Meng-jiao, HOU Zheng. Ecological vulnerability analysis of alpine meadow area based on pattern-quality-function ratio: take Diqing in Yunnan as an example. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(4): 2273-2285.
[1] Eitner B, Antonette M. Ecological vulnerability indicators[J]. Ecological Indicators, 2016,60(1):329–334. [2] Gonzalez P, Neilson R P, Lenihan J M, et al. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change[J]. Global Ecology & Biogeography, 2010,19(6):755–768. [3] 覃巧婷,陈建军,杨艳萍,等.黄河源植被时空变化及其对地形和气候的响应[J]. 中国环境科学, 2021,41(8):3832-3841. Qin X T, Chen J J, Yang Y P. et al. Spatiotemporal variations of vegetation and its response to topography and climate in the source region of the Yellow River[J]. China Environmental Science, 2021, 41(8):3832-3841. [4] Van Vliet M, Franssen W, Yearsley J R, et al. Global river discharge and water temperature under climate change[J]. Global Environmental Change-human and Policy Dimensions, 2013,23(2):450-464. [5] 连喜红,祁元,王宏伟,等.人类活动影响下的青海湖流域生态系统服务空间格局[J]. 冰川冻土, 2019,41(5):1254-1263. Lian X H, Qi Y, Wang H W, et al. Spatial pattern of ecosystem services under the influence of human activities in Qinghai Lake watershed[J]. Journal of Glaciology and Geocryology, 2019,41(5):1254-1263. [6] Huck M, Jedrzejewski W, Borowik T, et al. Analyses of least cost paths for determining effects of habitat types on landscape permeability:Wolves in Poland[J]. Acta Theriologica, 2011,56(1):91-101. [7] 刘桃菊,陈美球.鄱阳湖区湿地生态功能衰退分析及其恢复对策探讨[J]. 生态学杂志, 2001,20(3):74-77. Liu T J, Chen M Q. Wetland ecological function deterioration in Poyang Lake and countermeasures[J]. Chinese Journal of Ecology, 2001,20(3):74-77. [8] 王子滢,李周园,董世魁,等.近40年青藏高原生态格局演变及其驱动因素[J]. 生态学报, 2022,42(22):8941-8952. Wang Z Y, Li Z Y, Dong S K. et al. Evolution of ecological patterns and its driving factors on Qinghai-Tibet Plateau over the past 40years[J]. Acta Ecologica Sinica, 2022,42(22):8941-8952. [9] Berrouet L, Villegas-Palacio C, Botero V A. Social vulnerability index to changes in ecosystem services provision at local scale:a methodological approach[J]. Environmental Science & Policy, 2019, 93:158–171. [10] Eigenbrod F, Gonzalez P, Dash J, et al. Vulnerability of ecosystems to climate change moderated by habitat intactness[J]. Global Change Biology, 2015,21(1):275–286. [11] Kling M M, Auer S L, Comer P J, et al. Multiple axes of ecological vulnerability to climate change[J]. Global Change Biology, 2020, 26(5):2798–2813. [12] Polsky C, Neff R, Yarnal B. Building comparable global change vulnerability assessments:The vulnerability scoping diagram[J]. Global Environmental Change, 2007,17(3/4):472-485. [13] Kumar M, Savita, Singh H, et al. Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity[J]. Biodiversity and Conservation, 2018,28(8/9):2163–2182. [14] Malekmohammadi B, Jahanishakib F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model[J]. Ecological Indicators, 2017,82:293-303. [15] Newton A, Weichselgartner J. Hotspots of coastal vulnerability:A DPSIR analysis to find societal pathways and responses[J]. Estuarine Coastal & Shelf Science, 2014,140:123-133. [16] Chandra A, Gaganis P. Deconstructing vulnerability and adaptation in a coastal river basin ecosystem:a participatory analysis of flood risk in Nadi, Fiji Islands[J]. Climate & Development, 2016,8(3):256-269. [17] Raufirad V, Heidari Q, Hunter R, et al. Relationship between socioeconomic vulnerability and ecological sustainability:The case of Aran-V-Bidgol's rangelands, Iran[J]. Ecological indicators:Integrating, monitoring, assessment and management, 2018,85:613– 623. [18] Liu H L, Willems P, Bao A M, et al. Effect of climate change on the vulnerability of a socio-ecological system in an arid area[J]. Global and Planetary Change, 2016,137:1–9. [19] Liu H C, Fan J, Liu B Y, et al. Practical exploration of ecological restoration and management of the mountains-rivers-forests-farmlands-lakes-grasslands' system in the Irtysh River Basin inAltay, Xinjiang[J]. Journal of Resources and Ecology, 2021,12(6):766-776. [20] Grimm N B, Chapin F S, Bierwagen B, et al. The impacts of climate change on ecosystem structure and function[J]. Frontiers in Ecology and the Environment, 2013,11(9):474–482. [21] Micheli F, Mumby P J, Brumbaugh D R, et al. High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs[J]. Biological Conservation, 2014,171:186–194. [22] Steenberg J W, Millward A A, Nowak D J, et al. Forecasting urban Forest ecosystem structure, function, and vulnerability[J]. Environmental Management, 2017,59(3):373–392. [23] Zang Z, Zou X, Zuo P, et al. Impact of landscape patterns on ecological vulnerability and ecosystem services values:an empirical analysis of Yancheng nature Reserve in China[J]. Ecological Indicators, 2017,72:142–152. [24] Hou W, Gao J, Peng T, et al. Review of ecosystem vulnerability studies in the karst region of Southwest China based on a structure-function-habitat framework[J]. Progress in Geography, 2016,35(3):320–330. [25] Gonzalez P, Neilson R P, Lenihan J M, et al. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change[J]. Global Ecology & Biogeography, 2010,19(6):755–768. [26] 张艳军,李子辉,官冬杰,等.2000~2020年成渝双城经济圈植被生态质量变化及其对极端气候因子的响应[J]. 中国环境科学, 2023, 43(9):4876-4885. Zhang Y J, Li Z H, Guan D J, et al. Changes of vegetation ecological quality in the Chengdu-Chongqing economic circle from 2000 to 2020 and its response to extreme climatic factor[J]. China Environmental Science, 2023,43(9):4876-4885. [27] Guo B, Zang W, Luo W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem-impacts of global change and anthropogenic interference[J]. Science of The Total Environment, 2020,741:140256. [28] Gou M M, Li L, Shuai O Y, et al. Identifying and analyzing ecosystem service bundles and their socioecological drivers in the Three Gorges Reservoir Area[J]. Journal of Cleaner Production, 2021,307:127208. [29] 李志刚,段焕娥.西北高寒民族地区生态环境问题及农牧业发展——以甘南藏族自治州为例[J]. 地理科学, 2005,(5):41-45. Li Z G, Duan H E. Eco-environmental Problems and Livestock Farming and Agricultural Development in High Cold Minority Area:A Case Study of Gannan Tibet Autonomous Prefecture[J]. Scientia Geographica Sinica, 2005,(5):41-45. [30] 王焕,侯鹏,蒋金豹,等.基于"格局-质量-功能"的生态系统综合评估方法研究与实践[J]. 环境生态学, 2019,1(7):32-37. Wang H, Hou P, Jiang J B, et al. Research and practice of ecosystem comprehensive evaluation method based on "pattern-quality-function"[J]. Environmental Ecology, 2019,1(7):32-37. [31] Beroya-Eitner M A. Ecological vulnerability indicators[J]. Ecological Indicators, 2016,60:329–334. [32] 韩学敏,濮励杰,朱明,等.环太湖地区有效生态用地面积的测算分析[J]. 中国农学通报, 2010,26(22):301-305. Han X M, Pu L J, Zhu M, et al. Calculation of the Area of Effective Ecological Land in the Region around Taihu Lake[J]. Chinese Agricultural Science Bulletin, 2010,26(22):301-305. [33] 李俊生,李岱青,宋婷.优化生态空间连通性,提升区域生态质量[J]. 环境经济, 2021,(21):46-4. Li J S, Li D Q, Song T. Optimizing ecological spatial connectivity and enhancing regional ecological quality[J]. Environmental Economy, 2021,(21):46-4. [34] 钤会冉,翟家齐,马梦阳,等.海河流域生长季植被覆盖度时空变化及驱动力分析[J]. 水土保持研究, 2023,30(4):309-317. Ling H R, Zhai J Q, Ma M Y, et al. Temporal and Spatial Variation of Vegetation Coverage and Its Driving Forces During the Growing Season in Haihe Riber Basin[J]. Research of Soil and Water Conservation, 2023,30(4):309-317. [35] 李俊豪,梁娟珠.基于CASA模型长江流域植被NPP时空演变及与地形因子的关系[J]. 贵州大学学报(自然科学版), 2023,40(3):30-40. Li J H, Liang Z J. Spatiotemporal Evolution of Vegetation NPP and Topographic Factors Based on CASA Model[J]. Journal of Guizhou University (Natural Sciences), 2023,40(3):30-40. [36] 孔雪松,陈俊励,王静,等.耦合土地利用格局与过程变化的生态干扰评价——以长三角地区为例[J]. 地理科学, 2021,41(11):2031-2041. Kong X S, Chen J L, Wang J, et al. Evaluation of ecological disturbance coupling land use pattern and process change:Taking the Yangtze River Delta as an example[J]. Scientia Geographica Sinica, 2021,41(11):2031-2041. [37] 张建,雷刚,漆良华.南水北调中线水源区丹江口市域景观格局变化及氮磷净化能力[J]. 生态学报, 2021,41(6):2261-2271. Zhang J, Lei G, Qi L H. Change of landscape patten and nitrogen and phosphorus removal in Danjiangkou City, the Middle Route of the South-to-North Water Diversion Project[J]. Acta Ecologica Sinica, 2021,41(6):2261-2271. [38] 刘美娟,仲俊涛,王蓓,等.基于InVEST模型的青海湖流域产水功能时空变化及驱动因素分析[J]. 地理科学, 2023,43(3):411-422. Liu M J, Zhong J T, Wang B, et al. Spatiotemporal change and driving factor analysis of the Qinghai Lake Basin based on InVEST mode[J]. Scientia Geographica Sinica, 2023,43(3):411-422. [39] 吴英迪,蒙吉军.中国自然资源生态服务重要性评价与空间格局分析[J]. 自然资源学报, 2022,37(1):17-33. Wu Y D, Meng J J. Quantifying the spatial pattern for the importance of natural resource ecosystem services in China[J]. Journal of Natural Resources, 2022,37(1):17-33. [40] 冯君明,冯一凡,李翅,等.河势特征分界下的黄河滩区周边城镇生境质量与景观格局演变[J]. 生态学报, 2023,(16):1-12. Feng J M, Feng Y F, Li C, et al. Evolution of habitat quality and landscape pattern in the towns along the Yellow River floodplain under the boundary of river regime[J]. Acta Ecologica Sinica, 2023,(16):1-12. [41] Kumar M, Savita S H, Pandey R, et al. Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity[J]. Biodiversity and Conservation, 2018, 28(8/9):2163-2182. [42] Li D, Wu S, Liu L, et al. Vulnerability of the global terrestrial ecosystems to climate change[J]. Global Change Biology, 2018,24(9):4095–4106. [43] Termorshuizen J W, Opdam P. Landscape services as a bridge between landscape ecology and sustainable development[J]. Landscape Ecology, 2009,24(8):1037–1052. [44] El-Zein A, Tonmoy F N. Assessment of vulnerability to climate change using a multicriteria outranking approach with application to heat stress in Sydney[J]. Ecological Indicators, 2015,48:207–217.