Cold and hot spots identification for carbon sequestration capacity, water yield and soil conservation services of vegetation in Yunnan Province
LI Zi-hui, ZHANG Ya, BA Yong, CHEN Wei-zhi, DONG Chun-feng, YANG Meng-jiao, WEN Fang-ping
China Geological Survey Kunming General Survey of Natural Resources Center, Technology Innovation Center for Natural Ecosystem Carbon Sink, Ministry of Natural Resources Kunming, Kunming 650100, China
Abstract:Taking Yunnan Province as the study area, this study evaluated the carbon sequestration capacity and typical ecosystem services of its vegetation ecosystems, and identified the integrated cold and hot spots areas of carbon sequestration capacity and typical ecosystem services through spatial cold spot analysis. The results showed that. (1) The carbon sequestration capacity of Xishuangbanna in Yunnan Province was the largest from 2000 to 2020, with maximum values of 590.02gC/m2 in 2000 and 591.15gC/m2 in 2020, respectively. In terms of the change in sequestration capacity, the carbon sequestration capacity of Diqing, Zhaotong, Nujiang, Dehong and Lincang was increasing, accounting for 37.5% of the total city in Yunnan Province, while the other cities showed decreasing trend in sequestration capacity. Overall, the carbon sequestration capacity of vegetation ecosystems in Yunnan Province showed decreasing trend. (2) From 2000 to 2020, the maximum water yield service capacity in Yunnan was 2215.84mm in 2000 and 2045.83mm in 2020, and the change in total water yield was generally decreasing. From 2000 to 2020, the total soil conservation service capacity in Yunnan Province showed overall increasing trend. Specifically, the soil conservation service capacity of Kunming, Diqing, Nujiang, and other regions showed increasing trend and only Dehong showed decreasing trend in the total soil conservation service, which accounted for 6.25% of the total city of Yunnan Province. (3) Overlaying the three services of carbon sequestration, water yield, and soil conservation in vegetation ecosystems, it was found that there were fewer changes in the spatial distribution of the integrated hotspot areas and significant changes in the spatial distribution of the cold spot areas during 2000~2020. The integrated hotspot areas (with 99% confidence level, 95% confidence level, and 90% confidence level) were mainly distributed in Xishuangbanna, Pu'er, Lincang and, Dehong, among which the extreme hotspot areas (with 99% confidence level) were most significantly distributed in Xishuangbanna. The results of this study could contribute to improving the carbon sequestration capacity of vegetation and optimizing the spatial pattern of ecosystem services.
李子辉, 张亚, 巴永, 陈伟志, 董春凤, 杨梦娇, 文方平. 云南省植被固碳能力与产水、土壤保持服务冷热点识别[J]. 中国环境科学, 2024, 44(2): 1007-1019.
LI Zi-hui, ZHANG Ya, BA Yong, CHEN Wei-zhi, DONG Chun-feng, YANG Meng-jiao, WEN Fang-ping. Cold and hot spots identification for carbon sequestration capacity, water yield and soil conservation services of vegetation in Yunnan Province. CHINA ENVIRONMENTAL SCIENCECE, 2024, 44(2): 1007-1019.
张抗,苗淼,张立勤."双碳"目标与中国能源转型思考(一)——能源转型与碳达峰、碳中和[J]. 中外能源, 2022,27(3):1-6. Zhang K, Miao M, Zhang L Q. Thinking on the "Dual Carbon" goal and China's energy transition (I)——energy transition and carbon peaking and carbon neutrality [J]. Sino-Foreign Energy, 2022,27(3):1-6.
[2]
王亚男,唐佳璐,罗心恬,等.清洁能源使用率对气候变化的影响——以二氧化碳为媒介[J]. 广东化工, 2022,49(13):148-151. Wang Y N, Tang J L, Luo X T, et al. The impact of clean energy utilization on climate change:Using carbon dioxide as the medium [J]. Guangdong Chemical Industry, 2022,49(13):148-151.
[3]
付玉杰,田地,侯正阳,等.全球森林碳汇功能评估研究进展[J]. 北京林业大学学报, 2022,44(10):1-10. Fu Y J, Tian D, Hou Z Y, et al. Research progress on global forest carbon sequestration function assessment [J]. Journal of Beijing Forestry University, 2022,44(10):1-10.
[4]
谢立军,白中科,杨博宇,等.碳中和背景下国内外陆地生态系统碳汇评估方法研究进展[J]. 地学前缘, 2023,30(2):447-462. Xie L J, Bai Z K, Yang B Y, et al. Research progress on carbon sink assessment methods of terrestrial ecosystems at home and abroad under the background of carbon neutrality [J]. Earth Science Frontiers, 2023,30(2):447-462.
[5]
许骞骞,曹先磊,孙婷,等.中国森林碳汇潜力与增汇成本评估——基于Meta分析方法[J]. 自然资源学报, 2022,37(12):3217-3233. Xu Q Q, Cao X L, Sun T, et al. Assessment of forest carbon sequestration potential and sequestration cost in China:based on meta-analysis method [J]. Journal of Natural Resources, 2022,37(12):3217-3233.
[6]
孙雪峰,陈爱华,张雨,等.江苏省海水养殖贝藻类碳汇能力评估[J]. 水产养殖, 2022,43(8):8-12. Sun X F, Chen A H, Zhang Y, Zet al. Assessment of carbon sink capacity of marine aquaculture shellfish algae in Jiangsu Province [J]. Aquaculture, 2022,43(8):8-12.
[7]
王锴,朴世龙,何悦,等.中国陆地生态系统碳汇稳定性的空间分布特征及驱动机制[J]. 中国科学:地球科学, 2023,53(2):216-226. Wang Y, Park S L, He Y, et al. The spatial distribution characteristics and driving mechanism of carbon exchange stability in the Chinese land ecosystem [J]. Chinese Science:Earth Science, 2023,53(2):216-226.
[8]
Cook-Patton S C, Leavitt S M, Gibbs D A, et al. Mapping carbon accumulation potential from global natural forest regrowth [I]. Nature, 2020,585:545-550.
[9]
Yang Y H, Shi Y, Sun W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality [J]. Science China Life Sciences, 2022,65:861-895.
[10]
侯瑞萍,夏朝宗,陈健,等.长江经济带林地和其他生物质碳储量及碳汇量研究[J]. 生态学报, 2022,42(23):9483-9498. Hou R P, Xia C Z, Chen J, et al. Research on the Research on the Research on the Forestry and other biomass carbon reserves and carbon exchange volume of the Yangtze River Economic Belt [J]. Acta Ecologica Sinica, 2022,42(23):9483-9498.
[11]
李旭谦.青海草地生态系统碳汇功能初探[J]. 青海草业, 2012, 21(2):28-31. Li X Q. Carbon sink function of grassland ecosystem in Qinghai [J]. Qinghai Grassland, 2012,21(2):28-31.
[12]
康宽,陈俞全,郭沛,等."双碳"目标下农地细碎化对植被碳汇的影响研究[J]. 中国农业资源与区划, 2023,1:1-14. Kang K, Chen Y Q, Guo P, et al. Research on the impact of farmland fragmentation on vegetation carbon sink under the goal of "dual carbon"[J]. Agricultural Resources and Regional Planning in China, 2023,1:1-14.
[13]
徐松浚,徐正春.广州市湿地植被碳汇功能研究[J]. 湿地科学, 2015,13(2):190-196. Xu S Y, Xu Z C. Study on carbon sink function of wetland vegetation in Guangzhou [J]. Wetland Science, 2015,13(2):190-196.
[14]
周孟霞,莫碧琴,杨慧.岩溶石漠化区李树林土壤岩溶作用强度及碳汇效应[J]. 农业工程学报, 2020,36(13):116-123. Zhou M X, Mo B Q, Yang H. Soil karst strength and carbon sink effect in plum forest in karst rocky desertification area [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020,36(13):116-123.
[15]
Xiong X, Liu J, Zhou G, et al. Reduced turnover rate of topsoil organic carbon in old-growth forests:a case study in subtropical China [J]. Forest Ecosystem, 2021,8(1):1-11.
[16]
Jevsenak J, Klopcic M, Mali B. The effect of harvesting on national forest carbon sinks up to 2050 simulated by the CBM-CFS3 model:a case study from Slovenia [J]. Forests, 2020,11(10):1-16.
[17]
康满春,朱丽平,许行,等.基于Biome-BGC模型的北方杨树人工林碳水通量对气候变化的响应研究[J]. 生态学报, 2019,39(7):2378-2390. Kang M C, Zhu L P, Xu X, et al. Response of carb flux to climate change in northern poplar plantation based on Biome-BGC model [J]. Ecological Sinica, 2019,39(7):2378-2390.
[18]
Dib A E,Johnson C E,Driscoll C T, et al. Simula-ting effects of changing climate and CO emissions on soilcarbon pools at the Hubbard Brook experimental forest [J]. Global Change Biology, 2014, 20(5):1643-1656.
[19]
Mishra G, Jangir A, Francaviglia R. Model in soil organic carbon dynamics under shifting cultivation andforests using Rothc model [J]. Ecological Modelling, 2019,396:33-41
[20]
Pilli R,Grassi G,Kurz W A, et al. The Europeanforest sector:past and future carbon budget and fluxes underdifferent management scenarios [J]. Biogeosciences Discussions, 2017,14(9):2387-2405.
[21]
Fan J L, Mcconkey B G, Liang B C, et al. Increasingcrop yields and root input make Canadian farmland a largecarbon sink [J]. Geoderma, 2019,336:49-58.
[22]
方精云,郭兆迪,朴世龙,等.1981~2000年中国陆地植被碳汇的估算[J]. 中国科学D辑:地球科学, 2007,37(6):804-812. Fang J Y, Guo Z D, Pu S L, et al. Estimation of land vegetation carbon sink in China from 1981 to 2000[J]. Science in China Series D:Earth Sciences, 2007,37(6):804-812.
[23]
张春华,王莉媛,宋茜薇,等.1973~2013年黑龙江省森林碳储量及其动态变化[J]. 中国环境科学, 2018,38(12):4678-4686. Zhang C H, Wang L Y, Song Q W, et al. Forest carbon storage and its dynamic changes in Heilongjiang Province from 1973 to 2013[J]. China Environmental Science, 2018,38(12):4678-4686.
[24]
张睿婷,胡昕欣,金睿,等.2019年苏州市10处湿地中水体的透明度及其影响因索研究[J]. 湿地科学, 2021,19(3):331-341. Zhang R T, Hu X X, Jin R, et al. Transparency of water bodies and its influence in 10 wetlands in Suzhou in 2019[J]. Wetland Science, 2021,19(3):331-341.
[25]
高俊琴,雷光春,李丽,等.若尔盖高原三种湿地土壤有机碳分布特征[J]. 湿地科学, 2010,8(4):327-330. Gao J Q, Lei G C, Li L, et al. Distribution characteristics of soil organic carbon in three wetlands of Zoige Plateau [J]. Wetland Science, 2010,8(4):327-330.
[26]
杨昀则,田鹏,张海涛,等.基于InVEST模型的甬江流域水源供给功能时空变化特征[J]. 水资源与水工程学报, 2021,32(5):107-117. Yang Y Z, Tian P, Zhang H T, et al. Temporal and spatial variation characteristics of water supply function in Yongjiang River Basin based on InVEST model [J]. Journal of Water Resources and Water Engineering, 2021,32(5):107-117.
[27]
李令,贺慧丹,未亚西,等.三江源农牧交错区植被群落及土壤固碳持水能力对退耕还草措施的响应[J]. 草业科学, 2017,34(10):1999-2008. Li L, He H D, Wei Y X, et al. Response of vegetation community and soil carbon sequestration and water retention capacity to return farmland to grassland in the agro-pastoral area of Sanjiangyuan [J]. Pratacultural Science, 2017,34(10):1999-2008.
[28]
李益敏,李驭豪,赵筱青,等.云南省文山市生态系统服务的权衡/协同关系[J]. 长江流域资源与环境, 2022,31(11):2545-2555. Li Y M, Li Y H, Zhao X Q, et al. Trade-off/synergy relationship of ecosystem services in Wenshan City, Yunnan Province [J]. Resources and Environment in the Yangtze Basin, 2022,31(11):2545-2555.
[29]
刘露露,宋亮,董李勤,等.云南省近50年降水量的时空格局与成因分析[J]. 生态学杂志, 2020,39(10):3463-3470. Liu L L, Song L, Dong L Q, et al. Spatiotemporal patterns of precipitation and driving factor analysis in Yunnan Province in recent 50years [J]. Chinese Journal of Ecology, 2020,39(10):3463-3470.
[30]
Li Z H, Guan, D J, Zhou, L L, et al. Constraint relationship of ecosystem services in the Yangtze River Economic Belt, China [J]. Environmental Science and Pollution Research, 2022,29:12484-12505.
[31]
朱月华,侯宗东,徐彩仙,等.基于生态系统服务供需关系的甘肃白龙江流域生态风险识别与管理[J]. 地理科学, 2023,43(3):423-433. Zhu Y H, Hou Z D, Xu C X, et al. Identification and management of ecological risks in Bailongjiang River Basin of Gansu Province based on the relationship between supply and demand of ecosystem services [J]. Geographical Sciences, 2023,43(3):423-433.
[32]
袁宏伟,蔡俊,章磊.国家重点生态功能区人类活动与生境质量时空变化特征及空间效应[J]. 干旱区地理, 2023,46(6):934-948. Yuan H W, Cai Jun, Zhang L. Spatial-temporal variation characteristics and spatial effects of human activities and habitat quality in national key ecological function areas [J]. Arid Land Geography, 2023,46(6):934-948.
[33]
陈子琦,董凯凯,张艳红,等.全国重要生态功能区生物多样性保护成效区域对比评估[J]. 生态学报, 2022,42(13):5264-5274. Chen Z Q, Dong K K, Zhang Y H, et al. Regional comparative evaluation of biodiversity conservation effectiveness in important ecological function areas in China [J]. Acta Ecological Sinica, 2022, 42(13):5264-5274.
[34]
Hao R F, Yu D Y, Wu J, et al. Constraint line methods and the applications in ecology [J]. Chin J Plant Ecol, 2016,40(10):1100-1109.
[35]
和思羽,张蕾.基于InVEST模型的王快水库流域生态系统服务功能评估及权衡/协同关系[J]. 水电能源科学, 2022,40(11):60-63,81. He S Y, Zhang L. Evaluation of ecosystem service function and trade-off/synergy relationship in Wangkuai Reservoir basin based on InVEST model [J]. Water Resources Science, 2022,40(11):60-63,81.
[36]
官冬杰,李子辉,周李磊,等.生态系统服务约束关系界定及影响机制分析[J]. 中国环境科学, 2021,41(12):5837-5848. Guan D J, Li Z H, Zhou L L, et al. Definition and impact mechanism analysis of ecosystem service constraint relationship [J]. China Environmental Science, 2021,41(12):5837-5848.
[37]
荔童,梁小英,张杰,等.基于贝叶斯网络的生态系统服务权衡协同关系及其驱动因子分析——以陕北黄土高原为例[J]. 生态学报, 2023,(16):1-14. Li T, Liang X Y, Zhang J, et al. Ecosystem service trade-off synergy relationship and its driving factor analysis based on Bayesian network:A case study of the Loess Plateau in northern Shaanxi [J]. Acta Ecological Sinica, 2023,(16):1-14.
[38]
邓煌炜,廖振良.生态系统服务驱动因素及供需研究进展[J]. 环境科技, 2020,33(1):74-78. Deng H W, Liao Z L. Research progress on drivers of ecosystem services and supply and demand [J]. Environmental Science and Technology, 2020,33(1):74-78.